칼럼) 수능 역사상 가장 어려운 문제인 171130, 현실적으로는 어떻게 풀까?
게시글 주소: https://orbi.kr/00056741669
벌써 먼 옛날 얘기이긴 하지만 준킬러의 시대가 들어닥친 요즘 수능 수학이랑은 다르게
4-5년 전의 수능 수학은 킬러문제, 즉 21 29 30번 세 문제만으로 상위권을 변별했습니다.
특히 그렇기에 이 세문제의 난이도가 매우 높았고 30번이 극악이었죠.
그렇기에 수능 역사상 난이도가 가장 높은 문제를 논한다면 수학 가형 171130, 181130 은 빠지지 않고 탑 3안에 들어갑니다.
여기서는 171130에 대해서 얘기를 해보도록 하겠습니다.
이 문제는 사실 여러분들이 기출을 공부하면서 많이 접해보았을 겁니다.
문제자체가 너무 많이 꼬여있어서 야매로 답을 도출해내는게 이득인 181130이랑은 다르게
문항 자체의 퀄리티도 매우 높기 때문이죠.
우리는 이 문제를 풀 때에 주로 기울기 함수를 사용한다고 들었을 것입니다.
하지만 기울기 함수가 익숙한 요즘이랑은 다르게 저 시절엔 기울기 함수라는 개념이 매우 생소했기에
이 문제의 정답률을 매우 낮았죠.
그래서 저때엔 현장에서 기울기 함수를 떠올리기가 매우 힘들기에
기울기 함수를 모른다면 어떻게 풀어야 할까를 고민해 본 결과 기울기 함수를 사용하지 않은 풀이법을 개발했습니다.
우선 이런식으로 f(x)를 분수함수로 나타내어 보도록 하죠. 이젠 이 친구를 미분해 줍시다.
이렇게 되네요. 여기서 이 f'(x)를 관찰해 보도록 하죠. 분모는 항상 0보다 크기 때문에 분자만 잘 관찰한다면
f(x)의 증감을 파악할 수 있을 거라고 생각해 볼 수 있습니다.
그런데 분모는 4차함수네요. 분자의 4차함수를 잘 분석하면 될 것이겠군요. 일단 분자의 4차함수를 분석하기에
지금은 너무 정보가 부족하기에 일단 이정도까지만 파악하고 g(x)에 대한 정보를 도출해 보도록 하죠.
(나)의 조건에 따라서
이라는 관계식이 도출될 것이고 이를 앞서 구했던 f(x)와 f'(x)에 대입한다면
이것과
이것이 나오네요. 얘네들을 연립만 잘 해준다면
이 됩니다. 자세한 계산과정은 생략하도록 하겠습니다.
그리고 이 관계식을 다시 에다가 대입을
한 다음 정리해 보도록 하겠습니다. 그러면 아래와 같은 식이 나옵니다.
이렇게 될 것입니다. 이 식을 잘 관찰해본다면 매우 흥미로운 사실이 얻어지게 됩니다.
(alpha, g(alpha))와 (beta, g(beta))는 모두 직선 y=M(x-a)를 지나게 된다는 것입니다.
또한 이 점들에서의 g(x)의 기울기가 M이기 때문에 이 직선이 결국 이 두 점의 접선이 될 것입니다.
이젠 이것을 그림으로 알기 쉽게 표현해 보도록 하죠.
그림이 약간 이상하긴 하다만 다음과 같이 사차함수와 직선이 접합니다.
그러므로 이를 식으로 표현하자면 아래와 같이 됩니다.
지금까지 앞서 말했듯이 g(x)에 대한 정보를 도출해 내었습니다.
정보를 도출해 내었기 때문에
이제는 f'(x)의 분자인 사차함수를 분석해서 f(x)의 증감을 판별해 볼 차례네요.
이 g(x)를 f'(x)에다가 통째로 대입하고 정리해보도록 하죠.
도출 과정을 위한 계산은 매우 귀찮으니 생략할 것입니다.
이렇게 정리가 되네요. f'(x)=0에서 alpha와 beta가 극값인건 자명하고 이젠 다음으로
의 근을 구해보도록 하죠. 이것의 근은 매우 복잡하기에 그래프로써 관계를 봅시다.
이런 식으로 두 근중 하나는 x<a에 다른 하나는 alpha와 beta사이에 존재한다는 것을 알 수 있네요.
하지만 앞서 정의했듯이 이 함수는 x>a 일 때만을 다루므로 f(x)의 극값은 alpha, beta, alpha와 beta의 사이에 있는 값 이렇게 총 3개가 됩니다.
g(x)의 극값은 f(x)보다 작아야 하지만 사차함수의 극값은 항상 3개 혹은 1개만 가능하니 g(x)의 극값은
한 개가 되겠군요.
이제는 모든 과정이 끝났습니다.
여기에서 g'(x)=0의 근이 1개 혹은 2개일 조건을 찾으시면 M>=216이 나올 것입니다.
이것에 대한 계산은 이미 많은 기출문제집 등등에서 다루므로 생략합니다.
이렇게 쓰고 보니까 171130은 정말 까다로운 문제같네요.
공대오지마라 의치한가라라는 말을 마지막으로 떠납니다.
0 XDK (+1,000)
-
1,000
-
고2 3모 0
처음부터 선택 하는거잔아여 그거 그냥 하고싶은거 하먄 되나여
-
근데 막상 사도 안입을거 같긴함 왠지 나 이 대학 다닙니다를 외치고 다니는 느낌
-
고2인데 지금쯤부터 사문이나 세지 들을까? 이기상들을수잇고 대성은아예패스있음...
-
간식사온거 ㅇㅈ 3
-
거의 똑같음 ㅋㅋㅋㅋ
-
성대 공학계열 자과계열 둘 다 붙어놓고 자과계열가는게 기분이 이상하네요 저같은...
-
트럼프, 'DOGE분배금' 검토…예산절감 성공하면 가구당 720만 원 1
머스크 계획대로 2조 달러 예산절감 목표 달성시 가능한 액수 (서울=연합뉴스)...
-
옷 뭐입을까 9
신입생환영회 하이닉스 임직원 분들과 학과 교수님들 뵙는 자리임
-
취침 1
-
안녕하세요 언매 문제집 풀려고 하는데 어떤 문제집이 좋을지 모르겠어서 추천...
-
ㄹㅇ
-
투과목 4
지2로 넘어가는거 어케생각함? 물리는 만접받을자신있고 지1도 좀하면 1은 금방찍는데...
-
약간 내가 작수를 망친게 내가 멍청해서가 아니라 그냥 선택과목이 잘못되서 그런거라고...
-
아직안나왔나
-
궁금하닿
-
윤성훈소름 2
아니 강의 들으면서 의문 생겼는데 생각하자마자 짚어주심 개고트ㅜㅜ
-
하이닉스 임직원 분들과 학과 교수님들 뵙는 자리라는데 옷 뭐입고 가야해요..? 걍...
-
재종인데 두분다 독서 가르치심. 누가 더 좋음?
-
이런 시.. 멜 원딜은 너였구나 하하하하하하하하
-
군대갔다와서 내돈으로내래 ㅅㅂ
-
벌써 입학한 지 1년이 되었다니..
-
약간 내 기준 비서울대 문과의 수장같은 느낌임
-
나만 수2에 아주 조금 아주 조금 더 신경쓰나
-
안녕하세요. 자료 제작자 자이오노스입니다. (부르실 때, 노스라고 불러주셔도...
-
나도 전장 ㅇㅈ 12
ㅎㅎ
-
무기력해진다 1
윗 대학은 재종이 필수 같은데 돈이 없으니 원
-
1학년때말고는 할 일 없을거같은데
-
전액등록금 7
25 입시 끝나서 말하는 건데 학교 장학 ㅈㄴ 짜고 a 비율 개병신이니까 돔황촤…
-
오늘 신청했는데 내일까지 나올려나요? ㅠㅠ 50만원이 걸려있는 상황이라..
-
가격이거맞냐…?
-
맛있네
-
"홀수형"
-
고고혓!!!!!!!
-
내 맘은 비상사태
-
한거라곤실모딸깍찔끔밖에없는데95ㅋㅋㅋㅋㅋㅋㅋ 과탐75=사문95 맞는거같으면 갳우....
-
학교 돈 많노 13
학점 좆박았는데 개푸짐하게 깎아주네
-
다음주 지금 시간대면 지방 내려가겠네
-
..
-
하지웅T 현강 0
작년에 하지웅 들었는데 잘 맞는 거 같아서 재수하는데 다시 듣고 싶은데 어디서...
-
내가 해봤음
-
국어손가락걸기하는사람 12
난 안걸면 시간부족떠서필수임
-
ㄱㄱ
-
갑자기 5년전 현장강의를 들고 오는데 좀 당황스러움.. 뉴런이 보통 이런 경우가 많나요?
-
버튜버 좋아할거같이생겼다 vs qwer 좋아할거같이생겼다 9
들었을때 더기분나쁜게 뭐임?
-
재수 생1 질문 2
25수능 생명 백분위 91이었는데 다시 시작하려면 어디부터 시작해야할까요 *문제집...
-
오늘은 뜨냐
-
호두가 저럴 이유가 잇노 ㅋㅋ
-
현재시각 4시 7
이제첫끼먹음
-
생2 들어와 2
함 뜨자
칼럼추
오
공대갈꺼면 대학원도 생각하라
칼럼조이고
그러니까 칼럼을 읽고 고득점을 해서 꼭 의치한 입성하라는 뜻이시죠?? 감사합니다!!
진짜 PTSD오진다..
정병훈은 천재고
216은 신이다
나 궁금한데 이거 수2아니고 미적이야?
아 분수함수의 미적분을 썼으니까 미적이네요
수2는 분수함수를 못다루니 미적분이죠
기울기함수 풀이가 존재해서 수2로 나와도 됩니다.
수2로도 풀 순 있어용
우왕 ㅅㅂ 나는 수능 포기해야 하나 하..
ㅇㅇ
공대가라
이 칼럼을 보고 신호 및 시스템 과목과 디지'탈'신호처리의 기초 과목에서 S+을 쟁취하였습니다. 감사합니다.
문재인으로 봤으면 개추

형님 칼럼 멋있습니다진짜 저 문제는 기울기 발상을 못 떠올리면 손도 못 대는 것 같아요ㅠ
극대극소의 정의를 활용한 부등식 풀이로도 같은결과가 도출되더라고요.
저거1년뒤 181130 문제도 진짜 조호오오온나 어렵지않나요..
이거 호훈이 이렇게 풀었던거같은데
유튜브에 이 문제 풀이 올라와있는데
수학문제 해설 보고 감탄한거 그게 유일했음 ㅋㅋ
확통이 답이다!
동기 17수능 수학 다 맞았던데ㅋㅋㅋ
진짜 현실
아니 삼차함수가 어떻게 극대점이 2개냐고
아 ㅋㅋㅋ
17수능 -x^4+ax^3+bx^2+cx+d잡고 개형 파악했는데 계산 꼬여서 108나오고 틀림
아 저 문제 너무 어려워서 끄적이지도 못하고 넘겼어요…
이문제 수분감에 있나유?
당근
안풀고 넘겼던 기억이
개인적으로이건 쉬웠고 181130이 진짜 어려워서 풀면서도 짜릿해했던 기억이 남네요
이사람 멀쩡한글 쓴 거 처음봤네