미적분 ep1. 미분없이 그래프 개형 그리기
게시글 주소: https://orbi.kr/00056501135
미적분 ep1. 미분없이 그래프 개형 그리기.pdf
'미분없이 그래프 개형 그리기'와 관련된 자료입니다.
팔로우와 좋아요는 항상 감사합니다.
안녕하세요. 파급효과입니다. 다들 중간고사는 잘 보셨나요?
저번에 소개한 주제는 '수1 ep1. 왜 라디안을 쓸까? (노베용)'이었습니다.
오늘은 미적분 선택자들을 위하여 준킬러를 잡기 위한 첫 단계인
'미분없이 그래프 개형 그리기'를 소개할까 합니다.
수2가 왜 미적분보다 쉽게 느껴질까요?
아마 다항함수 그래프 개형을 파악하기 쉽기 때문일겁니다.
미적분도 미분없이 그래프 개형을 미리 빠르게 파악할 수 있다면 좀 더 쉬워지지 않을까요?
수능에 주로 나오는 초월함수 정도는
실제로 미분없이 그래프 개형을 빠르게 파악하는 것이 가능합니다.
아래의 5 STEP을 순서대로만 지키면 끝입니다.
초월함수 y=f(x)를 미분없이 그래프 개형으로 그려본다고 합시다.
1. 우함수나 기함수인가?
2. x가 무한으로 갈 때 어디로 가는가? x가 –무한으로 갈 때 어디로 가는가?
3. x=a에서 y=f(x)가 수직 점근선을 갖는다면 이 근처에서는 어디로 가는가?
4. x축과의 교점은 몇 개인가?
5. 위 4가지를 고려하면 직관적으로 그래프 개형을 예상가능합니다.
간단하죠? 그런데 그래프가 없고 말로만 하니 이해가 잘 안가나요?
자료에 모두 담겨져 있으니 확인해보시면 될 듯합니다.
이것만 잘 익히셔도 미적분의 절반은 해내신겁니다.
해당 자료는 기출 파급 미적분 chapter 4의 일부분을 담았습니다.
이 자료를 통해 미적분 준킬러 문제 풀이 접근이 훨씬 쉬워지길 기원합니다.
더 자주 자료와 찾아 뵙겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
알고싶던 내용인데 감사합니다

실제 시간 여하를 떠나서 이 스킬이 있으면 무심코 넘어가게 되는 점근선이라든지 정의역이라든지, 빼먹으면 치명적인 부분들이 습관적으로 점검이 되기에 미적 선택자에게 꼭 필요한 기술이라고 생각하네요 저도 애용했던 내용인지라 댓글 달아봤습니다..! ㅎㅎ
교과서에 있는 내용들을 재배열하여 메뉴얼 시킨 파트죠 ㅎㅎ
오 이거 작년에 보고 지금까지도 되게 유용하게 쓰고 있는 내용인데 또 올라왔네요
잘 쓰고 계신다니 좋네요 ㅎㅎ 기존에 올렸던 칼럼 재정비해서 올리는 중입니다 ㅎㅎ개인적으로 미적분 노베일때 전자책으로 보고 가장 도움 됐었던파트에요

전자책 시절이라 ㅎㅎ 벌써 3년전이네요좋은 자료 감사합니다
오랜만에 들어왔는데 메인에 있구만
잘 지내죠?
과급효파! 과급효파!
파급효과 생명 하 언제쯤 출시되요?
3주 정도 후에 출시된다고 생각하시면 될 것 같습니다
칼럼 정말 잘 읽었습니다!
궁금한 점이 있는데
저 칼럼에 삼각함수가 곱해진 꼴은 없더라구요
삼각함수가 곱해진건 그냥 미분해서 개형 파악하는 수 밖에 없나요??
주기성을 중점적으로 보면 됩니다.
그 외적인 것은 아무래도 미분해서 파악하는 것이 정확합니다
답변 감사드립니다 :)