-
과탐추천 0
노베이스 군수생 과탐 추천부탁드립니다 목표는 3등급입니다 전과목 노베라고 생각하시면...
-
모든 영역에서 평균 이상 하려고 하면 보통 사람들보다 많은 노력을 해야 하는것 같음
-
물1 범위 암만 생각해도 정상이 아닌데 교수님이 10분 동안 복습시킨다고 설명하시는...
-
01년생한테 4
몇년생이냐고 물어보는거 민폐인가요
-
수능 1등급 3
수학 선택과목이 기하 미적 확통있을때 1등급도 기하에서 4퍼센트 확통 4퍼센트...
-
그때 맨날 놀앗는데...하...그래도 수학만 좀 해놔서 다행
-
7월에 기행병 지원보급 합격했는데요. 당연 올해 수능은 못본다고 봐야하고 내년...
-
더프푸는데 한 6
10초 걸린듯
-
설대 aa가 4
수시로 자기들 학교 썼을 때 면접 부르거나 할 정도 되어야 주는 점수인가
-
닭강정으로 채택 9
이건 진짜 꼴리네
-
맘모스 사냥
-
오늘 친구가 문제냈는데 멍청해서 그런지 안풀림 어떤 가게 사장이 옷을 50% 할인...
-
지방살아서 서울에 대한 로망이 있는데 서울사람들은 다 예쁘고 잘생겼나요?
-
야이 기요마 7
이 기요미야 꾸준글
-
님들 할거없죠 4
이거맞아요?
-
초반만해도 6월전에 멘탈나가서 뭐하나 싶어서 안보려고 했는데 속는셈 치고 봐보니까...
-
무조건 aa임?
-
심심하노 2
공부하디싫노
-
오늘말고 내일
-
안녕하세요 쌩노베 재수생입니다…ㅠ 남들보다 늦게 공부를 시작하게 되어 고민이 좀...
-
내일 오답이랑 피드백이나 잘 해야지 아 근데 오늘 놀았어야 했는데.. 오늘 못 논게 아
-
4덮 언매 85 7
무보정이랑 보정 어느정도 예상하시나요 독서에서만 틀렷음...
-
2년전에 수능준비할때 평가원 교육청 못해도 높2는 나ㄹ왔는데 예전에 ㅇ이감같은거...
-
체력적으로 너무 힘들엇음뇨...
-
날씬한사람이 좋아 머리는 완전장발인게 좋음 눈 원래 낮긴한데 여기서 더 낮춰야...
-
같이 보는 것으로 약속하자
-
연?애 0
포기각서쓴지 20년
-
동가
-
현역 정시파이터입니다. 선생님께서 무단조퇴 할때마다 벌점 준다는데 어떡하나요?...
-
4덮 96 15찍맞 22틀 힘들었던 문제 13,15 22는 문제 읽지도 않음 ㅋㅋㅋ...
-
https://youtu.be/9Hi0DOChfTc?si=-ZEdqcO6jHcxK_X...
-
1주년 기념으로 전애인이랑 여행갓는데 집이 보수적?인가봄 전애인 부모가 우리집...
-
여잔데 콧수염이 남;; 11
막 엄청 진하진 않은데 거울 볼 때 자세히 보면 좀 거뭇거뭇함 사실나는남자였던것인가
-
같은 내신이여도 누군bb고 누군 cc고 20퍼라 은근 큰데..
-
수학 유형서 0
쎈 킥오프 말고 좋은 유형서 있나요?
-
07년생 우리 친구들 인원수도 많은데
-
단 1초도 후회해본적없음 그렇다고 전애인이 나쁜 사람이라는거는아니고 그냥 나랑 많이...
-
이번이 좀 못낸건가 비타민 k 한번 만들어보는게 교육청 사설업체 꿈인가 ㅋㅋ
-
사설이니까
-
술을 좀 줄여야되나 막 언어 장애가 자꾸 생기는 것 같음 그리고 길 걸을때 사선으로 걷더라
-
내일 점심은 덮밥임뇨
-
이미 실패를 해본 사람으로서 다들 실패의 아픔을 느끼지 않았으면..
-
진짜 이랬어야만 함 제발
-
수학 고수님들 한 번씩 풀어주시고 평가 해주시면 감사하겠습니다. 처음 만들어보는...
-
제발
-
뭔가 아쉽다
7ㅐ추
고등학교에서는 왜 저런 조합 노테이션을 안 쓰는 걸까요?
5252 어디까지 적을 늘리려고 그래
수능공부하는사람이 이걸 정독하면 도움이될까요? 훑어봤는데 이해하려면 한 한시간은 써야될거같아서
수능과는 아무 관련 없습니다. 차라리 위상자 칼럼을 정독하세요.
평소에 초월수는 대표적인 문자로 나타나는 pi, e 정도가 전부라 생각했는데 아닌 것도 꽤 있더라구요. 그리고 e*pi와 e+pi 둘 중 하나는 무조건 초월수라는 얘기도 신기했구요.
초월성이 뭐임
그 어떤 유리계수(정계수) 다항방정식의 해도 될 수 없는 복소수입니다. e를 영점으로 가지는 정계수 다항식은 못 만든다는겁니다.
정계수 대수방정식…으
너무 반가운 증명인데요..!
옛날에 중학교 때 파이가 왜 무리수이고 초월수인지 여쭤보았을 때,
담임 선생님이 과학고에 재직중이셨던 선생님께 요청해서 저 테일러급수를 통한 오일러 공식 증명이랑 린데만-바이어슈트라우스 정리랑 해서
총 8쪽 정도 되는 A4용지에 인쇄해서 주셨었거든요.
당시에 미적분을 몰라서 (심지어 책이 영어였어요!!) 읽다가 결국 '그래서 e^pi_i가 -1이라는 대수적 수가 나오기 때문에 pi가 초월수가 아니면 모순이라는 거지?' 라고 결론짓고 끝냈었어요...
그런데 이렇게 숨어있는 강호의 고수분들한테 이런 내용을, 심지어 한글로, 배울 수 있다니...
참 ... 이런 말 하면 늙은이같지만 세상이 참 좋아졌고, 점점 더 좋아지는 것 같아요!
어려워요