-
이감 컷 5
이감 컷은 보통 실제보다 높은가요 낮은가요?
-
작수 물지 1 2(현장) 6평 1 1 (집) 9평 1 2 (집) 사탐이 등급따기도...
-
불법 행위에 의한 손해배상은 고의 또는 과실로 인한 경우에만 2
해당하나요?
-
수능 높3정도의 수준인가요?
-
엄마가 날짐승 얘기할때 울컥하게 됨
-
지금 문학 연계 강의 듣는거 보다는 차라리 혼자 빨리 읽는게 나을까요?? 강e분...
-
국어 고전소설 몰빵, 독서 작수 이하 문학도 작수보다 훨씬 쉽긴 했는데 현대시 부분...
-
화1 0
이거 시그모 시즌3 수능 내면 1컷 몇예상?
-
고민이 되는구만
-
이퀄 ㅁㅌㅊ 1
언매 81 미적 92 영어 94 화학 47 생명 47 21111 될까요?,,
-
재성민 선생님은 목소리때문에 안맞아서 혹시 대성에 양승진같은 스타일 있을까요 ?...
-
강기원 라이브반 5
아프리카반은 에코백 종강선물 안주나요
-
매년 과외, 학원 수업하면서 느끼는데 듄 실모 생각보다 잘 뽑음... 굳이굳이 비싼...
-
이감6-9 4
아직 등급컷 안나왔나요
-
잡담안달았는데 수정이안되뮤ㅠ
-
언미물지 로 어느정도 백분위 맞아야 안정으로 가나요
-
수학 어렵다 15
고2랑완전다르네…
-
시발점같은 교과개념은 언제까지 끝내는게 이상적인가요? 25
워크북이나 쎈 같은 유형문제집 병행한다는 기준으로요! 저는 확통까지해서 1월전으로...
-
Σ위기=위대 이게 아니고 Σ위기 = 좆됐다! 입니다.
-
윤성훈쌤 강의 듣던중에 생계형 범죄가 머튼 아노미 이론의 대표적인 예시라고 하셨는데...
-
후
-
제하하하하하 0
-
수학지능 개박살 수능날 3등급이 받고싶구나
-
링거맞고옴 1
밥먹고 덮 사문 달릴예정
-
고2 10월 모고 수학 2등급(9월 72 10월 80)입니다 뉴런(25)...
-
국어 실모 123 다 뜸 김승리 모고인데 진동폭이 너무 크다…
-
후회하는거 0
수능 14일 전에 재수 확정지은거. 그 결과 2일을 날리고 오늘은 겨우 붙잡고...
-
강철중 첨 푸는데 맛있네요
-
나 작년에 그랫는데 10시 되자 마자 피곤해서 1차에서 마무리하고 집감ㅋㅋ
-
니가 날 쳐밀도 2
헉
-
학원 끊은 거에요 국어학원은 만족하면서 다니는데 영어수학과학학원은 ㅂㅅ이었어요.....
-
안녕하세요 오르비 두번째 게시글을 더프 결과랑 대학라인 정도가 궁금해서 여쭤보려고...
-
수시 발표가 조마조마하다는건 조금이라도 기대하기 때문임 3
말 그대로 제목처럼 어차피 안될 걸 알지만 불안하고 얼른 결과가 나왔으면 좋겠는 그...
-
ㅆㅂ 뭐임 수학? 30번 빼고 다 풀었는데 왜 88이지
-
28번 해설지 추가 풀이 신기해용~ 그냥 gt 구해서 치환치환 적분적분 했는디.....
-
뭐가나아보임? 과는둘다 컴공
-
1~4 찍특 5 행복과 만족은 다르다 6 친구와 지인은 다르다 7 죽고싶다면 일단 살자
-
3맞는거 아니겠지 재수때 3이었는데 진짜 우울할듯 실모 점수가 안나와서 좀 속상하네여 ..
-
풀러 갈게요
-
최저러라3 목표인데 시놉시스만 해도 될까요??? 아니면 걍 백호 남은거나 할까요
-
D d r 1
게임하고싶다
-
계시나여
-
최적T 메가로 이적하시고 정법 1타 먹으면서 그 분 처음 알았는데... 뭐 그...
-
자이나 마플은 선별 수록이라 해서 전문항 풀어보고 싶은데 한완기가 좋겠죠...
-
참고로 사설한테 밥이 되는 사람이 하는 말이라 개소리네 하고 넘기셔도 됩니다 확실히...
-
물리 폼이 진짜 ㅈㄴ 떨어졌는데 어캄
-
있는사람 앱이 안되서 채점을 못하고잇어요
-
수학 마지막 0
최저로 2or3등급은 맞아야하는데 뭐하는게 좋을까요 기출 분석 4개년은 끝냈고 이제...
-
평가원 3개년치 기출만 돌릴까요? 아님 사설 실모 돌릴까요? 3,4이고 안정3이...
7ㅐ추
고등학교에서는 왜 저런 조합 노테이션을 안 쓰는 걸까요?
5252 어디까지 적을 늘리려고 그래
수능공부하는사람이 이걸 정독하면 도움이될까요? 훑어봤는데 이해하려면 한 한시간은 써야될거같아서
수능과는 아무 관련 없습니다. 차라리 위상자 칼럼을 정독하세요.
평소에 초월수는 대표적인 문자로 나타나는 pi, e 정도가 전부라 생각했는데 아닌 것도 꽤 있더라구요. 그리고 e*pi와 e+pi 둘 중 하나는 무조건 초월수라는 얘기도 신기했구요.
초월성이 뭐임
그 어떤 유리계수(정계수) 다항방정식의 해도 될 수 없는 복소수입니다. e를 영점으로 가지는 정계수 다항식은 못 만든다는겁니다.
정계수 대수방정식…으
너무 반가운 증명인데요..!
옛날에 중학교 때 파이가 왜 무리수이고 초월수인지 여쭤보았을 때,
담임 선생님이 과학고에 재직중이셨던 선생님께 요청해서 저 테일러급수를 통한 오일러 공식 증명이랑 린데만-바이어슈트라우스 정리랑 해서
총 8쪽 정도 되는 A4용지에 인쇄해서 주셨었거든요.
당시에 미적분을 몰라서 (심지어 책이 영어였어요!!) 읽다가 결국 '그래서 e^pi_i가 -1이라는 대수적 수가 나오기 때문에 pi가 초월수가 아니면 모순이라는 거지?' 라고 결론짓고 끝냈었어요...
그런데 이렇게 숨어있는 강호의 고수분들한테 이런 내용을, 심지어 한글로, 배울 수 있다니...
참 ... 이런 말 하면 늙은이같지만 세상이 참 좋아졌고, 점점 더 좋아지는 것 같아요!
어려워요