수학A형 한석원 실전모의고사(빡모) - 5회 21번 질문부탁드립니다.
게시글 주소: https://orbi.kr/0004818147


x=1의 좌,우 근방에서 범위가 f(x)-16>0, f(x)-16<0 이어야 하는 이유를 모르겠습니다.

0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
느낌이 좋다 2
몬스터 두 캔 빨았더니 잠도 거의 안 오다시피 하고 필기본 노트에 옮겨쓰는 중인데...
-
그렇다고 옛날이 물로켓이다 이건 아니고 그때는 그때대로 어려웠는데 절대적인 난이도를...
-
자취 여부랑 함께 말해주면 더 ㄱㅅ 보통 70 쓰나?
-
칼럼 목표는 0
뭘 찾으려고 하는 검색어일까
-
시발 4
아
-
제가 작년에 사놓은 책이 2025 뉴런,수분감,시냅스가 있는데 그냥 풀까요 아니면...
-
ㅍㅈ가 뭐게 251
피자 피지 피즈 퍼즐 또 뭐있죠
-
위 문제는 각각 2509 30번, 2506 12번입니당. 위에껀 ㄹㅇ 계산만 12분...
-
외국 살다가 군복무 마치고 오랜만에 공부하는데 예전엔 다 했었는데 지금은 기억 나는...
-
너무 아름다우심.. 저런분들은 왜 내 근처엔 없는거지
-
20수능 가형 30번풀이 이 풀이를 보고 같은 종이라고는 생각할 수 없는 격의 차이를 느꼈음
-
샤인미는 거의 재탕으로 알고 있구 이해원이랑 설맞이 이로운 등 25 대비 26에서 바뀐 거 많나요
-
어버이날과 겹쳐서 겸사겸사 사려는데 고민 중 원래 사려던 비녀+장신구+책갈피 세트는...
-
26시간 하려면 내일 아침 8시까지는 해야 될거같은데 ㅋㅋ
-
D-2 ㅇㅈ 1
수학 더이상 할게없음 이제 으으
-
ㄹㅇ
-
2옥라에서멈춤 시에서가성처리함
-
결혼이나 여러 가지 '으른들의 이야기'를 듣고 있다 보면 내 얘기가 아닌데도 일단...
-
나머지 과목은 동사로 정했구 백분위는 정법이 더 좋은거같긴한데 공부량이나 여러가지...
-
누워서 문제만들고싶다
-
이해원N제 책이 1
이해원 모고 문제를 재탕하는 문제집인가요?
-
내 청력이 이럴리 없는데
-
힘들군
-
2시간정도만눈붙일까 10
흠
-
우항항 12
ㄹ.ㄹ
-
절 실물로 보실 기회가.. ㅎㅎ
-
레어 버그인가 4
두번 눌렀더니 두개 생겼네
-
지금 만나는 사람이랑 똑같음 생각해보니까 그러네 그에비해 난 아직 철이 덜 든거같음
-
171130은 0
기울기함수 발상만 딸깍하고 넘어가기에는 배울게 넘 많은 문제인데 고작 수2문제 따위...
-
오늘의 야식은 2
불닭과 핫바..
-
ㅇㅇ
-
14시간의 전사라는 매우 고통스러운 길을 선택하게됨
-
잘래요 10
내일은 기숙사 퇴사하러 학교로 드라이브~ 오르비언 여러분 모두 굿밤
-
B0도 사실 굉장히 성의있게 공부한거라는걸 깨달아버림
-
반갑습니다 5
여러분
-
안잔다 10
남은 8시간 안에 나는 가족법의 신이 된다 와라 중간고사여
-
중간 좃같네 6
그냥 재종 편입 박을까
-
설레발은 필패 2
잘본게 없는것같네 슈밤바
-
메디컬 과씨씨 14
어케생각함 셤기간이라 그런가 오만생각 다하고 있네 6년 같이 살아야하는데 가능?
-
아몰라 F받을래~~
-
죽겠다 7
하이고..
-
고1인데 중3때 아예 공부를 놨어서 중3수학을 거의 모릅니다. 이번에 시간날때...
-
기출->이해원->지인선 이 순서로 해야겟음
-
뉴런은 남겨놓을걸
-
전공시험 13시간 전 11
시험범위는 1장~6장 1장 스무스하게 끝 2장 벽 체감직전 상황
절댓값이 있으니 x=1 좌우에서 모두 f(x)-16>0 이거나 f(x)-16<0 이어야 극한값이 존재하겠지요.
각각이라는 말이 없는 걸로보아 ','는 '또는'으로 해석해야 될 것 같아요.
이 문제 해설이 진짜.. 오해할 소지가 다분하게 만들어놓음
좌일때 양수 우일때 음수란게 아닌것같고요 1기준 약간좌우에서 함숫값이 크거나작다는, 즉 극한값이 존재한다는 말인것같습니다. 마치 순서를맞춰서 서술한것같아 오해의 소지가 있는것같네요
동엽신님
죄송한데 여기서 1기준으로 볼때 좌우가 크거나 작게 똑같아야 되는 이유가 뭔가요??
질문을 잘 이해하지 못하겠습니다..
아 그1을 기준으로요
꼭 양쪽이 같이 크거나 작아야하는지가 궁금해요 한쪽은 크고 한쪽은 작으면 안되나요?
좋은생각을하신것같습니다. 저도 처음에그것때문에 심란했는데 저 식의 분자가 절댓값입니다. 그렇기때문에 미분계수가 기준점좌우로 둘다 크거나작다고할수있는것이죠. 그렇지않으면 극값을 갖는다는 논리가 이어져 나올수 없게 되겠죠 기울기가 계속 커지거나 일정할수도있는것이니까요ㅎㅎ
그저 제생각이므로 문제가 있을지도...ㅋㅋㅋ잘납득이안된다면 f2랑 f0 넣어보세요1기준으로 어떤지
만약 f(1)이 증가하는 상태라면 좌우의 극한값이 달라서 부호 값이 바뀌어 연속하지않겠죠?
그렇기때문에 함숫값을 기준으로 양 극한값들이 작거나 커야합니다.
그러기때문에 극값을 가집니다. 물론 이 상태에서는 극댓값인지 극솟값인지 알 수 없지만
f(-1)도 극값을 갖는데 그값이 f(1)보다 작기때문에 감소중인 함수이고
-1일 때 극소 1일 때 극대값인걸 알 수 있습니다