[JYJ칼럼] 7월30번 이른바 "연속정사영"에 대하여
게시글 주소: https://orbi.kr/0004714159
[JYJ칼럼] 7월30번 이른바 연속정사영에 대하여.pdf



학생들의 질문을 받다보면
"꼭 필요한 기본적인 전제를 공유하지 않은 상태"로
"본인의 특수한 하나의 방법은 왜 틀렸는가" 에 대한 설명을 요구받을 때가 있습니다.
이른바 "연속정사영"은 그런 경우 중에 하나입니다.
혹 평소 궁금해 하던 부분이었다면 참고해 보세요^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
22국어(중3 겨울에 풀었음) 화작 3등급 24국어 화작 3등급 25 6모 언매...
-
그니까 과거의 나야
-
오르비카페인삼각함수
-
시발점 보기는 ㅈㄴ 싫은데 개 컴팩트한 개념강의 츠천좀 복습용으로 ㄱㄱ
-
26수능 난이도 4
.
-
이 정도의 보편적 여장 기술은 상식 아닌가;
-
X(당시엔 트위터)에서 그런 거 좋아하는 사람들이 예수랑 유다 커플링으로 묶어놓고...
-
참고로 본인은 천주교 신자로 유아세례 받고 성실히 성당 다니는 중임 나는 천주교...
-
그것은 부모님의 기대를 배신하고 또 수능을 보는 you다.
-
좋지 않네
-
진짜 물수능 맛봤다고 반수 ㅈ으로 생각하는 애들 오ㅑㄹ케 많냐 7
24수능 끝나고는 거의 없었는데 25수능 끝나고 반수하겠단 애들 에타에 수두룩 빽빽이네 ㅋㅋㅋㅋ
-
새르비란 뭘까 2
새르비 터줏대감입니다
-
예비 고3이고 지금 강기분 문학/독서/언매 듣고 있음 문학/독서는 1.2배 분량으로...
-
이때가 공부 폼이 가장 좋았을때 같음.. 그때 어케한건지 모르겠음 지금 너무 퇴화함.
-
현역부터 재수때까지 국어는 인강 안 듣고 진짜 걍 문제만 좀 푸는 정도로 공부하다가...
-
생각보다 알게모르게 저 소재를 차용한 문학이나 영화, 만화작품이 꽤 있음 근데 저걸...
-
진짜임?
-
할게너무많음 내일 아침부터 과외가야대..
-
킹바다아ㅛ여ㅛ
-
물리 지구 딱대
-
하나만 골라줘 2
ㅇㅇ
-
1~8: 251109~251113, 250921, 250612, 250611 (대충...
-
사놓고 한번도 안봤네 하.
-
국어 박광일 문학 유대종 독서 수학 한완수 - 심특 - n제 영어 이명학 풀커리
-
오르비에서 상식인지 여부로 논란된주제인데
-
불교로 따지면 석가모니가 깨달음을 얻은 나무가 보리수나무라는 것을 아는 것과...
-
할만하지 않았으면 내가 먹고살 수 있을리 없을 것 매출 감소폭이 10%밖에 안되는데...
-
설거지 그만..
-
남자보다차가조아 3
다행이야
-
피곤해 8
자야징
-
대성은 수학이 빵빵해서 좋아요!!! 듣고계신분 있나요???
-
팔꺼면 설명이라도 하고 강매해야지 설명도 없이 강매시키네 ㅈ싸가지 없네
-
국어 방향성 0
기출은 따로 문제집 안사고 인강문제집만 들어도 되나요? 그리고 인강풀커리 vs...
-
"정오표"
-
이원준t 강의를 들어보고 막 코드의 중요성에 대해 설명하는데 전엔 안와닿았던게 왜...
-
아 내성발톱인가 1
개아프다
-
볼륨이 너무 크지 않나 원래 공부습관 잘 잡혀있는 애들 아니면 솔직히 완강 빡셈...
-
나도 힘들다 세상아~
-
동생이 중딩인데 학년말에 진로희망 쓸때 담임이 10분 주고 걍 대기업 직원이라고...
-
오류빼면
-
기숙 추천 좀요 0
제곧네
-
근데일본어 1도못함 그냥 망상이었음
-
먼 잠이여 ㅋㅋ
-
고1때 매3 시리즈 고2때 올오카 + 마더텅 고3때 올오카 비문학 4회독 문학은...
-
엄빠 다 무교임 할머니랑 외할머니는 둘 다 교회 열심히 다녔는데 각각 돌아가시거나...
-
과외샘 찾기 꿀팁ㅊㅊ점 옯과외시장 넘 어렵개생겨서 걍 김과외로 찾을라하는디
-
“네임드의 길“
좋은 글이네요.
수학을 잘하는 학생과 못하는 학생의 차이를 결정짓는 것은 '이게 정말 타당한가'에 대해 얼마 만큼의 스탠스를 취할수 있느냐.
답을 내는데 만족하면 결코 안정적 1등급이 될 수 없음.
인강이나 주위 선생님 혹은 교재가 중요한 이유는 이 차이를 보완해준다는 점.
앞으로도 이런 글 많이 부탁드립니다.
ps. 출제해주신 모의고사 잘 풀었습니다.
이중정사영이라니... 듣도보도 못한 논리인데요,
저걸 사용하는 애들은 어디서 저걸 배운걸까요???
설마 그냥 직관적으로 쓴걸까요
직관이 엄청나거나 직관이 거의 없거나 둘중 하나일듯
직관이 ㅈ나 없습니다 지송합니다 ㅠㅠ
너무 마음쓰지 마세요.^^ 생각보다 많은 학생들이 실제로 그렇게 답을 찾아 보았구요. 그게 안되는 이유 또한 마땅히 해명되지 않았을 테니까요. 이번 기회에 이면각의 정의와 법선벡터를 이용한 방법에 조금 더 집중해주시면 됩니다. 화이팅!!
실제로 문제풀면서 이중정사영 쓰고 이게 왜 구하고자 하는 넓이랑 같은지 증명하고 있었어요ㅋㅋ 위에서 쓰신바와 같이 수직이니까 성립된다는 것도 시간 끝나기 전에 알아서 그냥 넘어갔는데 좀 고민해봐야겠습니다 감사합니다
직관이 ㅈㄴ없네요 죄송해요
배우고 갑니다
방향벡터로 풀었기에...
허 저런 방법이;;
저렇게 했다가 뭔가 아닌거 같아서 제대로 했었는데 답이 같길래 맞나?? 했는데 확실히 아니네요.
저번에 이걸로 푸는 방법제시해서 글올리신분이 제대로 설명안해주셔서 궁금했었는데..
감사합니다
장영진 선생님
작년 29번 해설 부탁드리면 안될까요??ㅜㅜ
선생님이시라면 정말 탁월하게 해설하실 것 같은데요
글을 통한 서술이 상당한 지면의 제약을 가져올테니 쪽지로 답변을 대신한 것으로 하겠습니다.^^ 화이팅~
저도쪽지로29번 답변좀받을수있을까요ㅠㅠ
아 29번해설 저도 한번 들어보고싶습니다,,,, 그 문제때문에 벡터쪽에 두려움이생겨서 그부분을 어떻게공부해야하나 하고 고민하고있어요ㅠㅠㅠ
코사안세타두개구한걸로 덧셈정리쓰는것도잘못된풀인가요?
1777129번 게시물이 그 내용인 듯 한데 이미 댓글들로 오류인 이유들이 대략 설명되어 있습니다.
결국 각들 사이의 덧셈,뺄셈으로 구해지려면 두 교선이 서로 평행해야만 하는데 7월 30번은 전혀 평행하지 않습니다. 그럼에도 정답과 같은 결과가 나온 것은 두 평면이 바닥과 이루는 각의 코사인값이 모두 1/root3 이기 때문에 생긴 진정한 우연입니다.
안녕하세요 선생님
저도 7평 30번을 풀었었는데 평면 MPQ와 ABCD가 이루는각을 A1
평면 DEG와 ABCD가 이루는각을 A2라고 했을때
cos세타 = cos(A1+A2) 라 두고 덧셈정리로 푸는건 오류가 있는 풀이인가요?
평면 MPQ와 ABCD의 교선, 평면 DEG와 ABCD의 교선이 평행할 때만 덧셈정리로 풀 수 있습니다. 이경우엔 두 교션이 서로 평행하지 않으므로 덧셈정리로 풀면 안되며, 위위의 댓글에 언급했듯이 정답과 같은 값이 나오는 것은 두 평면이 바닥과 이루는 각의 코사인값이 모두 1/root3 이기 때문에 생긴 우연입니다.
대박 이거이거
오우 ~~ 대박~!! ㅎ 저도 수업때 그대로 얘기해야겠네요 ^^ 감사함니다~ ㅎㅎ - soowoo
큭... soowoo쌤 여기까지 출연해 주시고.. ㅋㅋ
선생님, 그렇다면 이 문제에서는 연속정사영을 이용해도 만약 '평면이 수직일 때 성립한다는 사실을 미리 알고서' 사용했다면 논리적인 하자가 없는 것인가요?