수특에서 배울거리를 정리해보자 1
게시글 주소: https://orbi.kr/00043586953
수능특강에서 배울거리 있는 문제를 짧고 간결하게 다루어보겠습니다.
거듭제곱근의 정의를 정확히 모르는 분들이 많습니다.
거듭제곱근의 정의를 물었는데 "루트"라는 말이 나오면 이상한 것입니다.
x가 a의 n제곱근이라는 것은 x를 n제곱해서 a가 되는 방정식의 근이라는 겁니다.
그러니까 xⁿ=a의 근을 a의 n제곱근이라 부릅니다. 허수도 포함하면 모두 n개가 나오겠죠.
그렇다면 문제에서 루트8의 세제곱근이라고 하였으니 세제곱해서 루트8이 되는 수를 생각해야합니다.
이를 식으로 쓰면 x³=루트8이 나오고 인수분해하여 근과 계수의 관계를 이용하여 허근의 곱을 구하면 2가 됩니다.
B의 원소는 세제곱해서 -8이 되는 수 중 실수를 말하므로 -2입니다.
B가 A의 부분집합이므로 2는 A의 원소가 되죠. A의 정의에 의해 -2는 a의 네제곱근입니다.
-2를 네제곱하면 a가 된다는 거니까 a는 16이죠.
따라서 A의 원소는 a=16의 네제곱근입니다. x를 네제곱해서 16이 된다.
즉, x⁴=16이므로 x²=±4이고 x=±2 또는 x=±2i입니다.
A-B니까 -2를 제외하고 2, ±2i를 모두 곱하면 8이죠.
어렵게 나오면 어떻게 되는 지 기출문제에서 살펴볼게요.
(가) 조건의 방정식을 보고 일반적인 방정식이 아니라 "거듭제곱근"으로 해석할 수 있어야 합니다.
x를 n번 제곱해서 64가 되니까요.
이 문제에서는 정직하게 xⁿ=64 꼴로 표현이 되었고, 무언가 치환해서 Xⁿ=64 꼴로 줄 수도 있겠죠?
그리고 (가) 조건 두번째 줄을 보면 실근 개수 이야기를 하고 있으므로, 거듭제곱근(중 실수인 것)의 개수를 파악해야함을 알 수 있습니다.
그러면 a의 n제곱근의 개수는 a의 부호와 n의 홀/짝에 따라 달라짐을 떠올려주시면 좋겠네요!
0 XDK (+600)
-
500
-
100
-
그냥 독서실보단 독재가 낫긴할까요? 브모님이 도와주신다고는 하는데 너무 죄송해서...
-
다른 과목들은 방향이나 실력 향상 등 안정되고 있다 생각이 드는데 영어는 어떻게...
-
섭마 청콤 같은거 제외하고 븗베54 레다 오메가 데이트 청콤 정도일려나
-
절 받아줄 곳은 어디일까요..
-
귀염뽀짝이 추구미인데
-
난
-
의대생 어카냐 1
생활패턴 박살났을텐데
-
플래너를 쓰신다면 지금 쓰시는 플래너들의 장단점, 플래너를 쓰지 않으신다면 그 이유가 궁금합니다!
-
ㄹㅈㄷ.... 채점했을때는 2점짜리 틀린 정황이 없었는데 선생님께 얘기해서 오엠알...
-
우리 단과쌤은 4~5퍼정도 나올거라고 하시던데 다른 사람들은 몇퍼정도로 예상하시나요?
-
개정전 시발점이랑 지금 뉴런이랑 비교하면 다이어트 눈커짐 피부 패션 분필 그냥 다 바뀜
-
학생들 꼬락서니보고 어휘 이렇기 안내겠지?
-
심지어 쇤베르크지문 4~9번 중에서 유일하게 틀린게 어휘임
-
서럽다 1
왜 자꾸 지구 2페를 틀리는것인가
-
합성함수 극대극소구나
-
웬만하면 안틀리네
-
맘에들어
-
세트로 안팔랴 슈발
-
삼수하고싶다 1
현실도피하기딱좋음 내년에 전장받을 성적 반들어야징~
-
학평은 제외임? 자이에 너무 대놓고 있는디
-
브이하고 눈밑으로 흔든흔들 후 가리키기 님들도 해보셈
-
반격편까지 다 봤으면 개추
-
이건 ㄹㅇ 첨보면 못풀것가틈
-
2판 하니까 시간 훅가네...
-
사실상 내 세대 마지막 수능같아서 같이 구경하고싶음..
-
전 엔진포스요
-
하지만 조센징들의 특징인 꼼수가 남아있기 때문에 방심은 못함 그리고 의대 대신 용접...
-
피곤함이사라짐
-
안다니시는 분들은 어케 대비함요?? 변형문제같은거 어케 구하지;;
-
드릴릴드 유기 0
수2 드릴드의 드릴1 미분까지 풀었는데 34문제 중에 9문제 틀렸어요 유기하고 드릴...
-
원래 아니라고 생각했는데 맞다면 어떡하죠 저 무서움;;
-
특히 지2 지금 인원 붕괴위기임 본인 누나 지2 응시시킬 예정
-
요런거보면 강의 안밀리고 제때 올리는게 참 대단한거 2
현우진 조정식 요런 강사분들이 괜히 1타가 아니죠제때 올리는걸 넘어 계획보다 조기 완강하는 분들
-
주한미군도 좀 닥치래 ㅇㅇ
-
컨텐츠가 너무 많아서 고민돼여 여러개 추천해주셔도 돼요 작년에...
-
모의고사든 N제든 문제를 다 풀고 오답한 후에는 다시 펼쳐보는 경우가 많지...
-
모교는 쪽팔려서제외ㅋㅋ
-
애니를 모르니까 21
프사 공감이 안되네 이건 심찬우도 불가능
-
플래너에 달아봄
-
n수생 대성패스.. 13
-
과연 재수를 할까 지금 시점에서 생각해보기엔 그냥 되는대로 갈꺼같은데막상 상황이...
-
1. 강의 재촬영 때문에 늦는다. 일단 이거부터 이해가 안 됨. 김범준 강의 한...
-
우리엄마가 지구인어서그런가
-
피짜를 먹어보자 6
맛있겠지ㅣ ㅋ
-
저 닉변햇어요 2
혹시 모를까봐 전 닉 어피니티임뇨
봐주셔서 감사합니다!
응원 감사합니다!
작년 수특인가요?
아뇨 2023 수능용 수특입니다
띠용 피뎁이 있나요?
아뇨 오늘 배송 받아서 폰으로 스캔? 사진? 찍었어요.
아하
오옹
봐주시고 댓글 남겨주셔서 감사합니다
읽다보니까 제가 모르는 파트라, 곰곰히 생각해보면서 읽었네요 ㅎㅎ 감사합니다
항상 봐주셔서 감사합니다
우유님 항상 감사합니다~ 연휴 열공하세요!
거듭제곱근은 참 재밌는 문제 만들기 좋은거 같네요 맨 위에 문제 참신합니다 진짜.
복소수까지 나오네요 ㅎㅎ 이런저런 문제 내기 좋은 소재 같아요 6평에 한번 나오고 끝일지 계속 더 나올지 ㅎㅎ

오늘 복습해서 재밌게 풀었네요댓글 남겨주셔서 감사합니다!
아니 ㅋㅋ 올해 수특 복소수 입갤 뭐야 ㅋㅋ 수학 신유형 나오겠네
그러게요 ㅎㅎ 봐주셔서 감사합니다
늦게 질문드려 죄송합니다,,
2022 6평 문제의
첫번째 단서에서 f(x)가 뒤에 붙어있어도 거듭제곱근이라고 볼 수 있나요?
맞다면 이유도 같이 설명해주시면...감사하겠습니다!
또, 두번째 단서에서
서로다른 두개의 실근이니 거듭제곱근중 실근인 것의 개수를 구해야겠다고 생각한뒤 n 짝/홀 여부를 판단해서
실근이 2개니 n은 짝수고 중근이니 n=4 란 흐름이 맞나요??
마지막으로, 이런 관점이 더 있나요...?
완전 신세계 입니다 ㄷㄷㄷ...
1. 뒤에 f(x)가 곱해져있으니까 f(x)=0 또는 x^n=64입니다. '또는'이니까 64의 n제곱근도 근에 포함되니까 거듭제곱근을 생각해주어야합니다.
2. 서로 다른 두 실근이 각각 중근이니까 a, a, b, b가 근이 됩니다. f(x)=0이 실근 최대 2개, x^n=64도 실근 최대 2개 갖는데 2개일 때는 중근이 아니고 부호가 서로 다르니까 ±a를 근으로 갖고, 중근이여야하니까 f(x)=0도 ±a를 근으로 갖습니다. x^n=64가 실근 두개니까 짝수 n에 대하여 조사해보면 되는데 f(0)=-2^(12/n)이니까 12 약수인 짝수 조사하면 됩니다.
3. 음 새로운 관점이라기보다 정의를 제대로 알고 있는가 하는 이야기인 것 같습니다.
역시 개념이 확실해야하는군요....
감사합니다!
1일차 클리어 감사합니다!
루트8인데 8이라고 보지 않기
복소수 범위는 실수와 허수를 모두 포함