머리 식힐 사람 들어오셈 ㅋㅋ
게시글 주소: https://orbi.kr/00041914769
오늘은 가볍게 2017학년도 연세대학교 논술 3-2에 대해 샌드위치 정리를 활용하는 법에 대해 소개해볼까 합니다. 여러분들이 서술 시 빠뜨릴 만한 부분은 밑줄 그어서 표시해봤습니다. 좀 많이 길어보이지만, 샌드위치 정리는 큰 거는 상한을 걸고, 작은 거는 작은 대로 하한을 걸어 범위를 정해두고 이걸 극한으로 보내 특정 수렴값을 가짐을 보이는 것이기에 제가 현장에서 푼다면 어떨까 하는 생각으로 하나하나 일일이 서술해 봤습니다.
문제)
해설(3-2)
어때요, 샌드위치 정리 참 쉽죠?
+) 추가: 저기서 연속함수 조건을 썼는데, x=0에서 연속이라는 거지, x≠0인 데에서도 연속임을 보장하지는 않습니다. 자세한 건 밑에 댓글 참고.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
비가오지말라해
-
국어 질문 0
올오카 끝냈는데 뭐가 더 나을까요?
-
야 너 3
화이팅해
-
3모 84 (미적 30번 틀 찍맞없음 ) 이었는데 미적은 올해 처음하는데요 저같은...
-
나 내가 못해서 행사 펑크낸거지 뭐 ㅠㅠ 누굴 탓하겠니 ㅠㅠ 허 ㅠㅠ 지방발령...
-
난불을질러 2
심장을 태워 널 미치게하고싶어 Big yeah we bang like this 모두...
-
이것은 한국 우주항공청에서 2045년 화성탐사를 목표로 하는데요. 성공하길 빕니다.
-
へうん 1
♥︎
-
말로 생각하는 순간 이미 그 순간은 지나쳐버린것 그 순간, 그 생각 자체를 온전히 그대로 느껴야함
-
가게에서 혼밥 첨해봐 10
떨린다 휴게실에 사람 넘 많아서 롯데리아 머그러 왔는데 떨린다 너무 헙
-
어느 곳에도 마음을 두지 마라
-
비가 싫다 0
싫으면서도 언어의 정원같음
-
해적왕인거야
-
아 개좆됏네 2
내 인생 가장 못본시험인데
-
수학과외구합니다 0
수학과외구합니다!!!
-
2025학년도 을지대 입시결과(수시, 정시_의대 포함) 0
2025학년도 을지대 입시결과(수시, 정시_의.. : 네이버블로그
-
우일신(又日新) 파본형 월간 N제 1월호 :...
-
전공 중간고사 후기 11
-
요즘 지구 0
아때요?? 지엽 많고 등급 따기 많이 어렵나요??? 현역 때 지구 하구 재수때 사탐...
-
정승제 ebs 확통 수능특강 강의로 개념배워도 됨? 1
확통 노베인데
-
레어사야됨
-
유튜브 1도 안보고 바로 랭겜간다
-
1kg임
-
3월 더프 언매 92. 미적 88. 영어 84. 물1 50. 지2 33. 4월 더프...
-
설탭 해보신분 0
갤럭시탭은 아예 안됨요??
-
타격 있을 것 같음 없을 것 같음?
-
지문 진짜 줫같네요 무지성 정보나열만 하는데 분량이 4문제짜리 최근기출의 1.5배...
-
아 파전에 느린마을 한 잔 하고싶네
-
어케 생각하시나여… 수능 때도 이러면 좀 그렇겠죠?
-
빅포텐 123 : 병호쌤 풀커리 타는중이라 이건 어지간하면 할듯 드릴 있는거 전부...
-
기하 질문 있음 0
최근 몇갸년 보니까 이차곡선에 대해서 접선 문제는 거의 안나오고 정으ㅏ로만 풀리는...
-
ㅠㅠ 집갈까요..
-
웃참함
-
애미 없나 진짜 2
;;
-
지금 수학 어떤거 하고계세요?ㅠㅠ 웬만한 엔제랑 실모 다 풀어봐서 풀게 없네용...
-
지방러라 시대라이브 하시는 강사분들로.. 지금 박종민t 듣는데 너무 빡세서 내신휴강...
-
둘다 중요하다고 생각함 하나만 공부하는건 너무 안좋음
-
[신춘문예] 0
집으로 돌아오던 밤 내리던 투박하고 무겁던 눈들이 마치 비와 같았었는데 그것은 한...
-
학교 자습 3교시 째 저는 놀고만 있습니다 포기했냐고요?아닙니다 자신있냐고요?...
-
생각해보면 3
군대 갔다 복학한 애들도 ㅈㄴ 애기네 해봐야 25정도일건데 얼라들이네
-
조진건가 0
막판에 젤 복잡한거 하나버렷는데 그게나왓네 그래도 벼락치기치곤 ㄱㅊ응거깉은데...
-
고3인데 정시로 가고싶어요 궁금한점은 1. 수특은 보통 언제까지는 끝내야 함? 2....
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
수의대 다니면서 조류에 대해서 조금 아는 거라곤 닭뿐이었음... 동물들은 정말 신기하고 지혜로운듯요
-
자작시-정자체 0
-
기하 ㄱㄱ
샌드위치정리? 쉬운데.

??: 헤응 샌드위치 만들거란생각 외않혜ㅋㅋㅋ이거 ㅈㄴ웃기네
흐응은 왜 헤응으로 바뀌노 ㅋㅋㅋㅋㅋ
아 시발 갑자기 뻘하게 터졌네
대가리 온도 39도
ㅋㅋㅋㅋㅋ 아 개웃기네 이 댓글
존나 뜨거워 여름처럼, 것도 8월 august (Hot)
와서 구경해, 친구 불러 주변에
별의별 개 변태, 걸레, 벌레도 돼, 자 (Curtain up)
아 ㅋㅋ 연논 3번으로 머리식히는 놈이 어디있냐구요
식히려던 머리가 더 뜨거워졌어요!

진ㄴ챠 ㅏ멋잇어ㅜㅠ머리 데일 거 같은데요?
머리 식힐 사람 들어오셈 ㅋㅋ << 이거 특
머리 식히려면 들어오면 안 됨
빡세다
잘 조이시네요
조이고 조이고~
게이조이고
1) 1/2로 수렴하는게 곱해져있는 나 식이 수렴한다면 왠지 0이어야 할것같다
2) 같은이유로 0이어야할것같다
논술에서 가장 감점이 많은 두 유형입니다 ㅋㅋ
감점정도로 봐주면 선녀네요...
ㄹㅇㅋㅋ
글씨체 뭔가 좋네요
선생님때문에 머리 뜨거워져서 건물 출입이 안됩니다...
머리식힘(물리)

다음거 2015학년도 카대의대 논술 가홍이 나오는 문제 해주실수 있나요?무슨 문제죠?
Oh shit ㅋㅋㅋㅋ
확통 논술 문제가 미친게 많은거 같아요

분명 0인거 같은데 왜 0인지를 모르겠네요근데 (가)가 어떻게 g(x)의 연속성을 보장해요? 궁금쓰

사실 살짝 야매인데, 그냥 저리 하지 않으면[1/2ⁿ, 1/2^(n-1)] 구간에서 n이 커질수록 불연속인 함수에 가까워집니다. 사실은 저거 굳이 연속이 아니어도 0 수렴이라 그닥 필요 없긴 해요 ㅋㅋ 다만 0 극한값과 0에서의 값이 같다 조건 쓰려면 교과 과정 상 x=0에서 연속이어야 해서

글쿤요!근데 연속이란거 빠뜨리면 감점은 아니겠죠? 그냥 퉁치고 넘어가도 되는 부분인가요?
x=0에서 연속인 것만큼은 밝히셔야 합니다! 단지 제가 야매라 한 거는 x≠0인 지점에도 연속임은 장담할 수 없어서에요!
윗분하고 같은 질문인 것 같은데, x=0근처에서 연속임은 어떻게 알 수 있을까요?
0<=g(x)이라 했으니 상수 k에 대해
0<=g((½)ⁿ)<=(½)ⁿ×k/(n+1)이니 n이 무한대로 갈 시 양쪽 다 0으로 수렴해 g(x)의 0의 극한값이 0으로 수렴해 g(0)=0이 됩니다. 0 이상이니 음수는 될 수 없고 g(0)>0이면 0 주변에서 증가함수 가정에 모순이니까요.

감사합니다!!논술은 수능이랑 느낌이 많이 다른가요
(가)를 통해 연속함수 저거 엄밀하게 증명 가능한가요? 먼가 반례가 있을 것만 같은데… 저도 그냥 대충 그렇다 치고 풀긴 했는데 연속함수라는 걸 어케 서술해야 할지 모르겠어서
위에 관련 설명 껴뒀습니다! 사실 저건 x=0에서 연속인 것만 밝힐 수 있습니다!
아니 이형 원래도 수학 잘 하는 거 알았지만 의논 합격후 뱃지달고 글 쓰니까 ㄹㅇ 넘사벽 같음
노예님은 ㄹㅇ 수학과에서 의대에게 빼앗긴인재다
혹시 논술같은거 푸실때 길이 바로바로 보이셨나요..? 아님 계속 끄적이면서 하다가 생각나신건가요??
머릿속에서 끄적이다 보면 실마리는 보이고 확인을 위해 전개하다 보면 서서히 길이 잡히는 거에 가깝습니다.
헉 알겠습니당 ㅠㅠ 머리 한번 제대로 식히고 와볼게요...!
샌드위치 먹고싶다.
머리 식힌다는 게
40도 찍는 열탕 들어가서 시원하다고 하는 그런 건가요
아.. 알겠어요.... 정시로 갈게요.. 죄송해요오
엑스는 영에서이 연속성 이렇게 증명해도 되나요!?
글씨 현우진이랑 완전똑같으시네 ㅁㅊ
각 잡고쓰면 훨씬더 비슷하답니다
감사합니다
마지막에서 두번째 줄은 쓰면 안 될 것 같습니다. 수렴인지 발산인지도 모르는 값을 부등식 안으로 넣으면 안됩니다. 극한의 대소관계는 각 항이 수렴한다는 전제하에 도출되는 것이므로 모르는 상태에서 사용해서는 안되고 반드시 샌드위치 정리만을 써서 넘어가야 합니다
2^(n-1)<m<2^n이니 m이 무한대로 발산하면 n도 무한대로 발산하니 쓸 수 있지 않나요?
가운데 식의 수렴발산 여부를 모른다는 게 문제입니다. 그래서 g(x)가 연속이라고, 즉 수렴한다고 주장한 첫번째 g(0)를 구하는 부분에 대해서는 아무말 안했습니다. 왜냐하면 그때는 극한의 대소관계로도 증명이 가능하니까요.
오 제시문 자체가 g(x) 수렴 여부 증명 후 사용이 아닌 극한값이 같다는 걸로 보인 거니 그렇군요. 감사합니다.

선생님 문과는 전혀 머리가 식지 않습니다.근데 확실히 의뱃다니까 간지 오진다 이 형..
샌드위치 정리에서 연속성을 따질 필요가 있나요. 풀 때 고려를 안했는데 잘못된점이 있는지 궁금합니다.
이렇게 써도 전혀 문제될 게 없습니다! 위에 댓글 다신 분도 비슷한 논지로 말씀하셨습니다!
글씨 되게 많이 좋아졌네