논리화학의 최단경로 [3]
게시글 주소: https://orbi.kr/00038970180
https://orbi.kr/00036266151 (케미로직)
https://orbi.kr/00038852512 (1편)
https://orbi.kr/00038905343 (2편)
칼럼의 컨셉은 저번에도 말했듯이 '최단경로'임
'합리적이고 일관적이며 빠른' 풀이가 아니라 '최단경로'가 컨셉임을 유의하면 좋겠음
풀이가 좀 너무 발상적이라던가 내분을 너무 쓴다거나 그런 느낌이 들 수 있긴 할거임.
실제로도 시험장에서 모든 문제를 최단경로로 풀려고 하면 오히려 꼬이게 됨
그래도 적어도 기출문제에 한해선 최단경로 풀이를 혼자 생각해보고 알아두면 좋다고 생각해서 쓰기 시작한 칼럼임
칼럼 읽는 방법
1. 문제 사진을 보고 혼자 최단경로 풀이를 생각해본다
(혼자 안 풀어보고 풀이 감상만 하면 도움은 1도 안되고 오히려 독이 됩니다)
2. 자신의 풀이와 칼럼의 풀이를 비교 해 보고 자기가 더 빠르면 댓글로 단다
3. 혹시 최단경로 풀이를 보고 싶은 기출문제는 문항넘버나 문제 캡처한 사진을 댓글로 단다
여기서 최단경로 풀이는 답을 맞추는게 아닌 증명을 의미함
예를 들어 문제에서 케이스가 두 개면, 반대편 케이스가 틀렸다는 증명도 풀이에 들어가야함
그러니깐 잘찍어서 푸는 풀이로 풀어놓고 댓글다는 이상한 짓은 ㄴㄴ
오늘은 양적 2개, 중화 2개를 준비해옴
컨셉은 없음 대신 손글씨 해설이랑 같이 첨부함
악필 양해좀
![](https://s3.orbi.kr/data/file/united2/b1e342ff34ca40f9b7621c3a680bc23a.png)
200320
스포방지용 간격
![](https://s3.orbi.kr/data/file/united2/9b08b1e6d22546c6bb488a140402add3.png)
0. 준 그래프는 이차함수임. 반응 후 A부피랑 C의 양은 투입한 B에 대한 일차함수이니 곱하면 이차함수.
1. B의 양이 2일때, 6일때 준 그래프의 값이 같으므로 B의 양이 4일때가 대칭축이고, 투입한 B의 양이 0일때 생성된 C의 양도 0이니깐 곱하면 0이됨. 이차함수는 대칭이므로 투입한 B의 양이 8일때도 이차함수가 0이 됨. 이때는 남은 A의 부피가 0일거임
2. 따라서 투입한 B의 양이 2mol 일때 1/4반응지점임. 초기 A 부피가 V이고 완결점에선 0이므로 1/4반응지점에선 A의 부피가 3V/4이고, 따라서 생성된 C의 양은 2mol임. B 2mol이 반응해서 C 2mol이 나왔으므로 계수가 같음 -> c=2
3. 투입한 B의 양이 4mol 일땐 생성된 C의 양은 4mol임. 또한 1/2반응지점이므로 A 부피는 V/2. 곱하면 2V로 x=2
4. 따라서 답은 4
210420
스포방지용 간격
![](https://s3.orbi.kr/data/file/united2/07fc58a6dcf14b008ee0b584cbc0332f.png)
1. ㄱ이 C라고 가정하면 모순나와서 ㄱ은 D고 d=2임. 이건 쉬우니깐 생략
2. 어차피 개수를 상댓값으로 둬도 상관없으니, 초기 A의 양을 1개라고 하고 반응한 A의 양을 k라고 두면
A가 k 반응해서 -k, C가 k 생성되므로 +k, D가 2k 생성되므로 +2k임. 따라서 반응 후 전체 물질 양은 1+2k
한편 반응 후 D의 양은 2k. 따라서 4w지점에서 2k/(1+2k)=2/5를 만족함. 풀면 k=1/3
3. 반응한 k의 양이 1/3이므로 1/3반응지점이고, 따라서 B 12w를 투입하면 완결점임
4. b*B의 분자량/A 분자량 = 반응 B 질량/반응 A 질량이므로 12w/3w=4. 계수 구할 필요 없음
*케미로직에 있는 선형적 분석법을 생각해서 초기 A 양을 1개라고 두면 시작 분수는 0/1, 완결점에서 분수는 2/3이고, 분자와 분모는 각각 투입한 B에 대한 일차함수이므로 k/(1+k) = 2/3으로 풀어도 되긴 하는데, 이 풀이는 따로 설명할게 많아서 생략함
210620
스포방지용 간격
![](https://s3.orbi.kr/data/file/united2/3c276811f0d94096a338a82dc844fa8f.png)
1. (나)에서 pH=1이므로 산성이고, 따라서 (가)에서도 산성임. (참고로 자동이온화를 무시하므로 pH<7이므로 산성이라고 하면 약간 말이 안됨. pH=1이므로 [H+]=1/10이고 H+가 존재하므로 산성이 맞는 풀이)
2가 산과 1가 염기의 혼합상황이고, 전체 용액이 산성이므로, 비율 상 1/3을 차지하는 이온이 A2-가 확실하다는 것도 알 수 있음. 즉 1:2:3에서 2에 해당하는 이온이 A2-
2. 만약 1:2:3에서 3에 해당하는 이온이 Na+라면, (나)에서 Na+의 양과 A2-의 양의 비는 2:4.5가 되고(투입한 NaOH 부피비 1:1.5), 이러면 염기성이므로 모순임
3. 따라서 1:2:3에서 1에 해당하는 이온이 Na+임. 따라서 (나)에서 Na+의 양과 A2-의 양의 비는 1.5:2이고 Na+:A2-:H+=1.5:2:2.5가 될 것. 이 때, A2-의 실제 양은 0.2M * xmL = 0.2x mmol임. 비율에 의해 H+의 양은 0.25x mmol
4. (나)에서 H+의 몰농도는 0.1이므로 0.25x = 0.1(x+30), x=20
5. (다)에서도 ㄱ에 해당하는 이온은 A2-이며, 어차피 구경꾼 이온이니 묽혔다고 생각하면 20mL에 60mL 첨가해서 부피 4배됐으니 몰 농도 1/4배 된거고, 순수한 H2A 농도가 1/5니깐 1/5*1/4 = 1/20.
* 사실, 2가 산과 1가 염기(또는 2가 염기와 1가 산)의 혼합에서 어떤 이온 X가 1/3의 비율을 차지하면 총 세가지 경우의 수가 존재함. 편의상 H2A와 NaOH라 함.
1. 이온 수 비율이 1:1:1이고, 혼합 용액이 산성. 즉 A2-, Na+, H+의 개수가 같아서 X는 셋 중 하나지만 액성이 산성인건 알 수 있음
2. A2-:OH-:Na+=1:3:5이고, 혼합 용액이 염기성. X 이온은 OH-
3. 위 두 가지 상황이 전부 아니라면, 혼합 용액이 산성이고, X이온이 A2-임.
이건 직접 증명을 해보면 되는데, 총 6가지 케이스가 있을것(산성이고 1/3이 A2-, Na+, H+, 염기성이고 1/3이 A2-, OH-, Na+). 이 중에 몇개가 사라져서 저 세가지 케이스만 남음.
근데 이거 알면 이 문제랑 사설 문제 날먹이 가능한데 수능때 안나올거같음. 아마도? 일단 나는 알려줬으니 ㅁㄹ
이걸 이문제에 적용하면
비율이 (가)와 (다)에서 둘 다 1:2:3이므로 1/3을 차지하는 이온이 존재하는데, 1:3:5가 아니므로 (가)와 (다)는 둘 다 산성이고 비율상 2에 해당하는 이온이 A2-.
나머지가 H+이거나 Na+인데, (다)에서 Na+가 더 많아야 하므로 (가)에서 Na+:A2-:H+=1:2:3, (다)에서 H+:A2-:Na+=1:2:3. 그다음 어쩌구저쩌구..
![](https://s3.orbi.kr/data/file/united2/d1d752a753b14c7fa1b88379dc325e4b.png)
220620
스포방지용 간격
문제가 그림땜에 쓸데없이 길음
1. 용액 3이 중성이므로 그 이전은 전부 산성임. 따라서 음이온 수 = X2-수이며, 변하지 않음.
2. 1과 2에서 음이온 수/양이온 수 비율이 같으므로 전체 이온수가 같음. 모든 이온의 몰 농도 합 비율이 8:5인데 이온 개수가 같으니 반대로 부피 비가 5:8임. V+5:V+20 = 5:8에서 V=20.
3. V=20이므로 초기에 존재하는 A2-는 6mmol, H+는 12mmol. 이거를 분수로 나타내면 6/12
용액 1에서 음이온 수도 같아야 하므로 6/10, 즉 양이온 수 10mmol. 양이온 개수가 줄었으니 A가 2가, B가 1가(1->2에서 이온 개수 변하지 않았으니 B가 1가, A가 2가로 논증도 가능). 그리고 넣은 Z(OH)2양 만큼 양이온 양이 감소하므로 넣은 Z(OH)2의 양은 2mmol
따라서 중화점(3)에서 A2- = 6mmol, Z2+ = 2mmol, Y+ = 8mmol
4. Y+ 8mmol 넣으려면 0.4M YOH 20mL필요함. 따라서 x=5
5. Z(OH)2 5mL에 Z2+ 2mmol 있었으니 a = 2/5(M)
따라서 5/20 * 2/5 = 1/10, 답 4
손글씨까지만 하니깐 힘들다 걍 1주에 한개씩 올릴래
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
두시간자겠네 하...............
-
어릴때 얇다고 놀림을 엄청 받아서 억지로 중딩때 굵게 낼려고 했더니 변성기 이후에...
-
기대할게요
-
나:멍멍멍멍멍멍~~~(사람 그만좀 물라는 뜻) 강아지:멍멍멍멍~~(ㅈ까라는 뜻)
-
수리논술 미기확 전부 골고루 나오는 대학 어디어디 있나요? 인서울 이상에서요....
-
돌고래랑 대화 불가능
-
허리아퍼잉 3
잉
-
혼자 듀얼모니터로 롤하면서 왈라라라라랄 오르비잠깐보고 아이고. 헉. 이게나야~...
-
취침모드 드가자~
-
ㅎㅎㅎㅎ
-
115가 되고싶다
-
열등감을 어카지 0
비교하는걸 멈춰야되는데 그게힘들긴해..
-
세계랭킹 10위 안에드는 대학생은 과외시급 얼마 받는게 적당하다고 생각함? 3만 3.5만? 4만?
-
좋아하던 소설이 완결했었거든요...
-
GTA5 스토리모드 했음뇨 온라인은 할수록 짜증만 늘음
-
자야 3
해야지
-
울지 마요 8
괜찮아요
-
옯붕이들은 코노 와타시가 만족할만한 야식을 내오도록
-
야식 머겄음 2
스팸마요주먹밥(수제)
-
고2 모고는 1~2오갔고... 결방학때 그냥 과외쌤이랑 같이 5개년 기출 풀면서...
-
잔다 2
웅.
-
제발 14명만 빠져주세요 간곡히 부탁드립니다.
-
메인 6수 2명 0
나란히 23수능만 거른게 ㅈㄴ 신기함 ㅋㅋ 우연의 일치인가
-
화요비 1
같은사람만나고싶다
-
꼭 사야할 레어가…
-
내가 셋셀 테니 4
넌딱
-
너의 미소가 조사대상 11
예이예이예이
-
우르프나 해 7
우르프 최적화야 지금
-
늦버잠 1
내일은 10시반에 일어나야징
-
기만질 하고 싶다 11
ㅈㄱㄴ
-
잘자요 16
오늘 제가 징징 거리는거 받아줘서 고마웠어요 내일은 좀 말짱한 정신으로 돌아올게요...
-
우으...우...우웅
-
노방종 컨텐츠 찍나
-
진짜 중요한 건 바로 노무현은 살아있다는 거임
-
고3학생이고 국어임 모 강사 풀커리 타고 있는데 어느 순간 이해가 안 돼서 질답...
-
흐윽 2
우으..
-
아 배고픈데 7
야식머글까
-
너를 용서하겠다 1
증오는 독이 되기에
-
까악
-
이제 집 들어와서 못 씻음 하이고
-
까마기 1
가지마까아악 가지마까아악
-
미치겠네
-
일대임? 그럼 그거보다 높은건 이대?삼대? 헉 글면 구대 십대도 가겠네??엌 ㅋㅋㅋㅋㅋ
-
의욕이 푹 꺾여버림 자야겠다...
-
우우웅 1
진동소리
-
ㅈㄱㄴ
-
그래야 억지로라도 안할거 같은대
아잇 박제 까먹었네
뭔지 머르지만 개추
200320 단순히 이차함수 특징 써서 (0,0). (2, 3/2V) 니까 4,2V 구하면 살짝 더 빠르긴 한데 이러면 화학이 아니라 수학이 되니까 패스
210620 지금 보다가 생각난건데
[H+]가 x 0일때 0.4M, x 30일때 0.1M, x 80일때 0M이니까 3(x+80) : 5x = 3:1
x=20 이라는 방법이 있네요.
오..두번째껀 좋네요
처음꺼는 물리2처럼 푸는거라 익숙은한데 적을까하다가 말았어요 ㅋㅋ
첫번째거는 화학이 아니긴 하죠 ㅋㅋ
7ㅐ추
와 ... 맨 처음에 교육청 문제 저게 저렇게 풀리네요 ...
경로적분ㄷㄷ
저기서 완결점까지 반응시키면 왜 6/b인가요?
분자 A양이 4/b이므로 이게 반응을 다 하면 2/b가 추가 생성됩니다