므아아앙 [1069161] · MS 2021 (수정됨) · 쪽지

2021-07-11 22:19:06
조회수 9,076

f(f(x))=x 또는 f(x)=f^-1(x)를 다루는 태도

게시글 주소: https://orbi.kr/00038488590

안녕하새오


이번 글의 주제는 f(f(x))=x 또는 f(x)=f^-1(x)를 어떻게 다룰 것이냐 하는 것입니다.


f(x)가 역함수를 갖는 연속함수라고 하면 f(f(x))=x의 근은 원래 함수와 역함수의 교점으로써 다루어볼 수 있겠습니다.


이때 증가함수의 경우 y=f(x)와 그 역함수의 교점이 모두 y=x위에 있으므로 그냥 f(x)=x를 보면 됩니다. 감소함수의 경우에는 f(x)=x인 근이 하나 존재하고, f(a)=b, f(b)=a(a<b)인 두 점을 지날 수 있으므로 이 부분에 대한 체크가 필요합니다.


이 때, 감소함수의 경우에는 f(x) != x이면서 f(f(x))=x인 해가 존재한다면 y=x를 기준으로 대칭으로 존재하기 때문에 f(f(x))=x의 해는 홀수 개가 됩니다. 증가함수의 경우에는 그런 제약이 없기 때문에 짝수와 홀수가 모두 가능하죠.


따라서 f(f(x))=x의 근이 짝수 개라고 하면 그냥 증가함수라고 단정이 가능하고, 아닌 경우에는 별도의 확인이 필요합니다..


다음으로는 증가함수도 아니고 감소함수도 아닌 경우에 대해서도 생각해볼 수 있겠습니다. 이 경우와 관련해서는 이제 f(x)=x인 것과 f(a)=b, f(b)=a (a<b) 인 것이 모두 가능하니까 어떤 경우가 맞는 것인지를 찾으면 됩니다.


이제 기출 문제 보겠습니다.


2019학년도 6월 모의평가 수학 나형 29번

 그리 어렵지 않습니다. 일단 연속함수인데 역함수를 갖는다 하였으니 감소함수이거나 증가함수여야 합니다. 먼저 증가함수인 경우에는 (-1,-1), (1,1), (2,2)을 지나야 하는데 그렇게 되도록 하는 a,b,c는 존재하지 않습니다. 따라서 f는 감소함수. (-1,2),(1,1), (2,2)를 지나는 경우를 구하면 되겠네요.


2019학년도 9월 모의평가 수학 나형 30번

이 문제는 위의 문제보단 좀 어렵습니다. 일단 f(x)=x를 생각해보면 삼차방정식이므로 실근이 최대 3개까지 나오는데 f(f(x))=x의 실근은 5개이므로 f(p)=q, f(q)=p (p<q)를 만족시키는 p,q가 존재해야 합니다. 이 때 f(x)-x=h(x)라고 하면 h(p)>0, h(q)<0이고, x->inf일 때와 x-> -inf일 때 각각 양의 무한대와 음의 무한대로 발산한다는 점을 고려하면 f(x)=x의 해는 x<p인 영역에서 하나, p<x<q인 영역에서 하나, x>q인 영역에서 하나가 나온다는 점을 알 수 있습니다.


따라서 f(0)=0, f(1)=2, f(2)=1, f(a)=a, f(b)=b임을 알 수 있습니다. f(x)=a0+a1x+a2x²+a3x³이라 하였을 때 미지수가 네 개이고 f(0)=0, f(1)=2, f(2)=1, f'(0)-f'(1)=6으로 주어진 방정식도 네 개이니 계수들을 결정하면 문제가 풀립니다.


읽어 주셔서 감사합니다.


좋아요 부탁합니다

 

0 XDK (+5,000)

  1. 5,000