도구화만 하면 될까?
게시글 주소: https://orbi.kr/00037817947
이번 글에서는 1등급을 위해 도구화, 행동 영역 너머의 무엇을 지향해야 하는지에 대해 이야기하려 합니다. (좋아요와 팔로우를 지향해봅니다 ㅎㅁㅎ)
여러분이 단 한 번도 생각해보지 않았을 것이기 때문에 '글이 이해가 안 되면 어떡하지'하는 걱정을 하다보니 글이 길어졌습니다.
그래도 1등급에 대한 강한 열망이 있다면 한번쯤 아주 진지한 자세로 읽어보기를 바랍니다.
안녕하세요, 주예지 수학 연구소 AJOODA LAB 입니다.
이제는 굳이 말하지 않아도
자신에게 맞는 공부 방법
을 찾는 것이 중요하다는 것 정도는 모두가 알고 있습니다. 다만, 아는 것과 하는 것 사이에 큰 차이가 있을 뿐이죠.
지금부터 그 간극을 좁히기 위해 무엇을 해야 하는지에 대한 힌트를 얻어가기를 바랍니다.
여러분이 공부 방법을 선택함에 있어서 쉽게 간과하는 부분이 있습니다. 바로
목표는 어디인가?
입니다. 목표에 대한 현실적인 감각을 잃어버려서는 안 됩니다. 스스로 답을 얻었다면 계속해보죠.
여러분이 1등급이 아니라 2등급 혹은 3등급을 목표로 한다면 가장 중요한 것은
개념의 출력(아웃풋)
입니다. 이것을 용이하게 하기 위해 흔히 말하는 도구화, 행동 영역이 필요합니다.
'개념의 입력(인풋)은 중요하지 않은 것이냐?' 라고 질문한다면 당연히 그렇지 않습니다. 하지만 인풋은 누구나 하는 것이기 때문에 희소성이 떨어집니다.
참고로 개념 학습을 인풋까지만 하는 것으로 착각하는 경향이 있는데 아웃풋까지 학습해야 개념 학습이 완료되었다고 보아야 합니다.
한편, 여러분이 1등급을 목표로 한다면 개념의 인풋과 아웃풋 외에 추가적으로 익혀야할 것이 있습니다.
독해, 설계, 해결 과정의 논리 (Logic)
입니다. 지금까지 많은 강사가 이 부분을 학생에게 직접적으로 가르치지 않아왔기 때문에 다소 어색하게 느껴질 수 있습니다.
하지만 개념을 도구화(체계화)하고, 행동 영역을 정리하는 것만으로 1등급을 받을 수 있다는 말은 거짓입니다.
만약 그랬다면 숱하게 많은 학생들이 수학에서 1등급에 준하는 실력을 갖추어서 평가원이 아주 곤란했을 것입니다.
뿐만 아니라 논리와 독해력이 가장 필요하다고 생각되는 국어에서도 누구나 도전만한다면 손쉽게 1등급을 따냈을 것입니다.
하지만 현실에서는 자신의 노력만으로 2등급을 넘지 못하는 학생이 수없이 많이 있습니다. 여러분이 계속해서 성공한 경우만을 보기를 원하기 때문에 이러한 학생을 애써 외면하고 있었을 뿐이죠.
다시 말해, 여러분은 의식하지 못하지만 2등급에서 1등급으로 가는 과정에는 상당한 운이 필요합니다. 그 운은 재능일수도 있고, 좋은 선생님을 만나는 것일수도 있습니다.
여기까지 이 글을 읽었다면 아마 공부하면서 굉장히 답답함을 느끼는 학생일 것이라 예상됩니다.
분명 공부는 계속 똑같이 많이 하고 있는데 성적이 정체되었다는 압박때문에 힘겨운 것이겠죠.
그런 분에게 이 글이 도움이 되었으면 좋겠습니다.
앞으로 고정적으로 1등급을 받기 위해 여러분은
운의 영역을 줄여야
합니다. 그러기 위해 '왜 여러분 앞에 높인 벽이 마냥 높아보이는지' 진지하게 고민해야 합니다.
'개념은 아는데 문제가 안 풀린다'는 말을 달고 산다면, 지금까지 안일하게 도구화와 행동 영역에만 매달렸기 때문입니다.
고정 1등급을 받는 학생은 당연하게도 도구화와 행동 영역만으로 문제를 풀지 않습니다.
문제를 읽는 순간부터 그들의 머릿속에 논리 회로가 맹렬하게 돌아갑니다. 이것이 의식적이든 무의식적이든 말이죠.
이는 이따금 보이는, 국어에서 선천적인 독해력을 가진 학생에게 쉽게 보여집니다.
그런 학생에게 모르는 문제를 질문하면 '그냥 읽어보니 답이 이건데 왜 답이 그거냐고 물어보면 그냥 그래.' 라는 답을 듣게 되겠죠.
이러한 무의식적인 요소는 문제를 읽고, 푸는 과정에 상당히 많은 영향을 미칩니다.
그러니 반드시 1등급을 받아야겠다면 도구화와 행동 영역이 희소성이 떨어진다는 사실을 받아들이길 바랍니다.
반드시 더 나아가서 논리를 어떻게 의식의 수면 위로 꺼내올려야 하는지에 대한 진지한 고민을 하고, 배우기를 바랍니다.
그러려면 먼저 고정 1등급을 받는 학생들이 문제를 독해하면서 하는 생각, 즉 논리를 그대로 따라하려고 노력해야 합니다.
지금까지 강사들이 여러분의 운에 맡겨두었던 것을 여러분의 실력으로 증명하길 바랍니다.
앞으로 여러분이 논리를 따라하며 공부할 수 있게 하기 위해서 작년과 같이 시간이 나는대로 오르비를 통해 문항을 공개하고 그에 대한 독해, 설계, 해결의 논리를 담은 해설지를 제공하도록 하겠습니다.
누구보다 빠르게 자신의 고민을 해소하고 싶다면 팔로우는 기본이겠죠?!
긴 글을 읽느라 고생 많았습니다. 이 글을 통해 생각이 많아졌다면 다행입니다. 그렇게 한발 더 성장하길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개좆같이 어렵네 ㅋㅋㅋㅋㅋ 문학 7개 쳐틀랴서 78점이네
-
나 굶어 죽어 으헝헝
-
야마노래듣기 0
야마돌아버리기
-
평소에 틀린 건 알겠는데 정확히는 모르다보니 대댓글만 보고 넘겼는데 마침 '전형태...
-
인생망함 0
ㅠㅡㅠ
-
노베인데 수특 독서 풀면 도움 될까요? 수특 문학은 중요하다해서 하고 있습니다.
-
반갑습니다 이천이십육 빅포텐 수학원 시작하겠습니다 그런데 풀기 전에 하나 알아야 할...
-
?
-
https://forms.gle/KywVRnPuh4tmUk479 안녕하세요...
-
정시파이터라서 앞면이 나오면 개인 과제 하고 뒷면이 나오면 개인 과제 던지니까...
-
내 이미지가....
-
나는 공부할때 동기부여 14
하루 공부끝나고 할거 생각했던거같음.. 예를 들어서 오늘 밤은 애니보고 코코이하고...
-
2대1로 구해요!
-
B나이다 B나이다
-
이미지 커리 타는데 미친기분 완성편 까지 끝내고 복습만 계속 할까요 아니면 엔티켓 들어갈까요
-
근데 장지문에 중세국어 내는 게 좋을 수밖에 없는 게 5
별의별 신박한 내용 들고 오면 학생들은 어지간한 변태가 아닌 이상 지문을 읽을 수밖에 없음
-
노모어는 크기 작아져서 손절했고 다른데는 거의 안 먹어봄
-
이제 나도 어둠의 현강자료 받는다 히히
-
여러분들은 어떤 마음가짐으로 공부하시나요 ,, 가끔씩 마음이 가벼워질때 몸도 축 쳐지더라구요
-
요즘 드는 생각 0
또 없음
-
자퇴생은 수능성적에 따른 비교내신으로 처리되는 건가요? 연대는 검정고시 점수는 상관...
-
국어 비문학연습 0
시간 꼭 재고 풀어야됨? 비문학 실력 늘리고 싶은 목적임 독해 실력
-
학력없이 외모로만 다이까도 아이돌 탑티어 가능한 분 2
예상은 하셨죠? 니게tv 개국 160일차
-
ㅎㅎ 5
ㅎㅅㅎ
-
결말 보고 ㅈㄴ 웃었는데 야하기도하고 안나오긴할듯
-
이거 진짜 하나도 이해가 안가는데 어카죠
-
맞으니까
-
1-12,16-20,23-27 풀고 나머지 풀기 보통 20-25분이면 풀어서...
-
저도 대학 가고 싶어요
-
이해할수없다 0
점점 뭐라 할말이없어진다
-
뼈는 어떻게 하시려고 그러지
-
작화는 좋던데
-
흰티 청바지에 밑에 바시티 블루종 입으면 어떨거 같나요?
-
김승리 현강에서 내년엔 젠지랑 콜라보 한다고 떡밥 뿌렸는데 0
매승 1~3 드랍하고 4호부터 하려고 하는데 1~3에 주요기출이나 최근기출 넣어놓은거 있나요?
-
원래 이차곡선 0
포물선이 제일 어렵나요 타원까지 진도나갔고 쎈 포물선 타원 푸는데 타원은 딱히...
-
중국군 ‘대만포위훈련’ 이틀째…해협 봉쇄하고 폭격기 동원까지 1
중국군이 2일 반년 만에 벌인 ‘대만 포위’ 훈련을 이틀째 이어갔다. 스이...
-
큰거온다 7
캬캬
-
첫정답자2000덕드리겠습니다!
-
저는 접점의 x좌표도 t에 관한 함수라고 생각해서 g(t)라고 놓고 합성함수...
-
[속보] 中, 대만포위훈련 종료 발표…"훈련 과제 원만히 완료" 0
중국 베이징 톈안먼 광장의 국기 게양대에 중국 국기인 오성홍기가 휘날리고 있다....
-
완벽하게 이해하려고 네번은 읽은듯... 읽다가 머리 빠개지는 느낌 근데 지문 어려운...
-
어느 공장에서 ~~물건을 생산한다 이런 식으로 낼 건데 어느 물건을 생산하는 공장이 좋을까요?
-
커리어 下
-
나도 이제 성숙해지는 것인가
-
헤헤
-
수면시간 국어 0
영향 큼? 방학때랑 국어실력이 아예 다른 사람이 되어있음.. 방학때는 한...
-
난 사주보는거 지금이 이조시대도 아니고 먼 근주야
흔히들 말하는 '풀이의 필연성'을 의미하는 걸까요?
풀이의 필연성을 어디에서 찾는가에 방점을 찍어야 합니다.
예를 들어, a라는 조건을 읽고 A라는 개념을 떠올렸다면 조건을 통해서 필연성을 찾은 것입니다. 이것은 개념의 출력(아웃풋)의 영역입니다.
하지만, a라는 조건과 b라는 조건을 붙여읽어야 하는 상황이거나, 세 조건 a, b, c 중에서 어떤 조건이 풀이를 시작하기에 적합한가와 같이 경중을 따지는 것은 논리의 영역입니다.
풀이의 필연성은 사실 논리와 지식이 적합하게 갖춰져있다면 자연스럽게 따라오는 결과일 뿐이죠.
와뭔가 심오한글이다 진짜 한발짝 더 나아가게해주는 그런무언가 흠... 좋은 글 감사합니당 ㅠ
다 읽으셨나보군요!! 그저 대단할따름입니다.
제가 수험생이였을 때, 그것도 무려 6월에 그런 열망이 있었나 싶을 정도네요.
고민하다보면 분명 닿을 수 있는 목표이지만, 고민의 방향이 잘못되었다면 높은 성적을 받는 것의 많은 부분이 개인의 운에 달려있다는 점이 많은 학생들을 관찰하면서 알게 된 안타까운 사실이었습니다.
일례로 제 친구는 고등학교때 '개념 원리 - 쎈 - 기출문제'만 보고 고정 1등급을 유지했습니다. 저정도만 제대로 이해해도 수능을 보는데 지장이 전혀 없다는 것이죠.
하지만 누군가에게는 상당히 부족한 양일 것입니다. 양으로 논리를 습득하려면 상당히 많은 문제를 풀어야 하기 때문에 운이 좋다면 수능 전에 체득할 것이고, 운이 나쁘다면 재수하면서 체득할 수도 있겠죠.
그러니 반드시 고민하면서 공부했으면 좋겠네요!!
긴 글에 더불어 긴 댓글까지.... ㅎㅅㅎ
응원하겠습니다!!