익힘책 함극문제 풀다 궁금한게 생겼어요
게시글 주소: https://orbi.kr/0003746735
다음 두 조건을 만족하는 다항함수 중 차수가 가장 낮은 다항함수 f(x)를 구하여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
원래 지금쯤이면 도착해야하는디 ㅅㅂ
-
25뉴런보고 한번 더 보려고 26뉴런 샀는데,, 미친 비주얼 색깔이 졸ㄹㄹㄹ라 이쁨...
-
생윤 커리 0
지금 이지영쌤 출제자의 눈 개념 끝냈는데 이 시점에서 현자의 돌. 마더텅 ,...
-
지나가는 여자들 중에 절반은 이뻐보이네 미치겟어 수능준비 안할때도 이랬어,,
-
한완수 상중 0
현역 기하 3모 2컷인데 상, 중도 해야하나요?
-
지각 각인데 급함
-
시험지만이라도 받아가서 따로 칠 수 있을까요 지금 차가 레전드로 막혀서 늦을지도...
-
이건 변수인데 2
차가 평소보다 더 막히는데 이런
-
더프 홧팅 2
-
아침 3
쩝쩝
-
일교시좀 0
그만좀 ㅅㅂ
-
전 안봄
-
물변표로 작년에 서성한은 탐구가 거의 의미없음 <<<실제로 했고 올해 심해지면...
-
얼버기
-
얼버기 0
다들 좋은아침
-
언매야 살살좀해주렴
-
오늘 더프였네.. 7시 50분까지 가야되는데 큰일났다!
-
얼버기 0
부지런행
-
게바쁘내 진짜 1
근데 넷플 드라마 하나 처음부터 끝까지 봐버림
-
킹스날 0
-
앞날 깜깜해서 미치겠는데 이것보다 친구를 못보는 게 너무 외롭고 힘듦..고딩 때...
-
맨큐 읽다 보니 어느새 창밖이 환하네요
-
한국사 시간에도 못잠?? 걍 시험 끝났다싶음 자도 되나요
-
일찍 잘걸 ㅜㅡㅜ
-
4덮은 4덮일뿐이지만 4잘 6잘 수잘 드가자~
-
ㅇㅂㄱ 0
애초에 자지도 않았음
-
골좀넣어봐
-
여기 물리 많이쓰이나요? 로드맵에는 딱히 물리같은거없고 코딩 소프트웨어...
-
그날 해야 하는 공부들이 있는데 다 못 끝냈을 때의 스트레스가 너무 심해요. 생활...
-
전문의 따고도 남을시간 아닌감…
-
D-210 0
영어단어 수특 1~13강 복습 사회문화 일탈이론 복습 관료제,탈관료제 복습 수학...
-
자야지 3
-
돌멩이는 신임 4
돌멩이: 수익률 0%정백: 수익률 -9.2% ㅅ ㅣ발
-
윤사 생윤만 봐도 너무 어렵던디 그리고 경우의수 잼병이라 확통은 ㄹㅇ 엄두도...
-
6년동안 읽은책 저거밖에없는데 많이심각한거임?
-
전교권 n수생 대치동 과학고 -> 과탐 1~3등급 다 차지함?
-
다음 주 화수목금 하루 한 과목씩 10시에서 1시 사이에 치는데 오후 5시 취침...
-
공대는 물리가 필수인건 다들 알고 있을거고 쨋든 현역으로 공대를 꼭 가고 싶다면...
-
아무거나 질받 ㄱㄱ
-
얼마를 잃은거지 ㅅㅂ..
-
얼버잠 1
네
-
오르비 안녕히계세요 11
2000모으고오겟습니다 화이팅
-
20일에 혼자 머라도 하고 집와야겠다
-
아직까지 못 자고 있냐..
-
미대입시해서 평소에 미술학원만갔다오고 뻗어서 방학때도 하나도 안하기도했고 고1부터...
-
외국인도 있네
-
좀비 등장
-
자취러 여친생기면 꿀팁 22
가을에 한 11000-12000원이면 흰다리새우 생물로 1키로 사는데 한...
-
작년보다 어려운 시험지 기대하겠습니다
발문에서 두조건을 만족하는 다항함수중 차수가 가장낮은 다항함수f(x)를 구하라고 했으니,
f(1)=0 f(-1)=0 f'(1)=8 f'(-1)=-8을 이용하여
구하려고 해보면 g(x)를 2차,3차로 할시에는
미지수를 더추가하게하므로
f(x)를 구할수가없다는걸 알수있습니다.
그러니 f(x)를 구하기 위해서는
자명히 g(x)는 1차가 될수밖에없습니다.
f(x)=(x+1)(x-1)g(x) 라고 놓으면,
첫번째 식으로부터 g(1)=4
두번째 식으로부터 g(-1)=4
의 결과를 얻을 수 있습니다.
결국 g(x)는 n차 다항식이고(n은 음이아닌 정수. 0차는 상수함수), y=g(x)는 두 점 (1,4)와 (-1,4)를 지납니다.
최소의 n을 찾는게 목적이므로 n이 상수함수일때부터 시작해서 조건에 맞는 g(x)를 찾으면 됩니다.
g(x)의 조건을 구한 뒤 그 조건에 맞는 g(x)들 중 차수가 가장 낮은 걸 고르는 과정으로 문제풀이를 해야할 것 같은데, 위에처럼 ax+b로 바로 놓고 푸는 건 결과만 맞는 풀이 아닌가요...?
엄밀한 풀이는 아닌 것 같은데..;
해설지 풀이는 그렇게 나와 있어서요.. 님 풀이가 맞는거 같아요. 감사합니다
저런 극한값이 두개가 주어지면 반드시 g(x)는 일차이하의 식으로표현될수 있습니다.
차수가 최소인것을 구하라고 했으니g(x)는 일차식또는 상수일 것이고, 일차이하의 식을 일반적으로 나타낼수있는 (ax+b)형태를 사용한것으로 보입니다.
극한값 두개가 주어지면 g(x)가 반드시 일차 이하의 식으로 표현될 수 있는 이유는 무엇인가요??
위에 댓글다신 분이 말하신것처럼 두 점 (1,4),( -1,4)을 지난다는 조건만 주어졌는데 차수를 알 수 있는건가요?
시간이 좀 지났는데요....
저런 극한값이 두개가 주어지면 반드시 g(x)는 일차이하의 식으로표현될수 있습니다. ----이말은
(a,b), (c,d) 를 지나는 일차함수 또는 상수함수는 반드시 존재한다.라는 의도였습니다.
(a,b), (c,d)를 지나는 함수중 가장 차수가 작은 함수를 구해야 하므로
g(x)의 차수를 2차, 3차, 4차, 5차.....n차 로 잡지않고 1차함수로 놓은 것입니다. (1차항의 계수를 미정계수로 설정하면 상수함수도 포함되므로)