익힘책 함극문제 풀다 궁금한게 생겼어요
게시글 주소: https://orbi.kr/0003746735
다음 두 조건을 만족하는 다항함수 중 차수가 가장 낮은 다항함수 f(x)를 구하여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
장난으로 들어오는 사람이 너무 많아서 방을 다시 팔게요 6
클릭 10 문항이고, 범위는 수학 Ⅰ / Ⅱ입니다. 진지하게 풀 사람만 들어와 주세요
-
오늘은 수학 자작문항을 kahoot로 만들어 보았어요 5
>>>플레이하러 가기<<< 한번 풀어보시고 오류나 개선할 점이 있다면 댓글로...
발문에서 두조건을 만족하는 다항함수중 차수가 가장낮은 다항함수f(x)를 구하라고 했으니,
f(1)=0 f(-1)=0 f'(1)=8 f'(-1)=-8을 이용하여
구하려고 해보면 g(x)를 2차,3차로 할시에는
미지수를 더추가하게하므로
f(x)를 구할수가없다는걸 알수있습니다.
그러니 f(x)를 구하기 위해서는
자명히 g(x)는 1차가 될수밖에없습니다.
f(x)=(x+1)(x-1)g(x) 라고 놓으면,
첫번째 식으로부터 g(1)=4
두번째 식으로부터 g(-1)=4
의 결과를 얻을 수 있습니다.
결국 g(x)는 n차 다항식이고(n은 음이아닌 정수. 0차는 상수함수), y=g(x)는 두 점 (1,4)와 (-1,4)를 지납니다.
최소의 n을 찾는게 목적이므로 n이 상수함수일때부터 시작해서 조건에 맞는 g(x)를 찾으면 됩니다.
g(x)의 조건을 구한 뒤 그 조건에 맞는 g(x)들 중 차수가 가장 낮은 걸 고르는 과정으로 문제풀이를 해야할 것 같은데, 위에처럼 ax+b로 바로 놓고 푸는 건 결과만 맞는 풀이 아닌가요...?
엄밀한 풀이는 아닌 것 같은데..;
해설지 풀이는 그렇게 나와 있어서요.. 님 풀이가 맞는거 같아요. 감사합니다
저런 극한값이 두개가 주어지면 반드시 g(x)는 일차이하의 식으로표현될수 있습니다.
차수가 최소인것을 구하라고 했으니g(x)는 일차식또는 상수일 것이고, 일차이하의 식을 일반적으로 나타낼수있는 (ax+b)형태를 사용한것으로 보입니다.
극한값 두개가 주어지면 g(x)가 반드시 일차 이하의 식으로 표현될 수 있는 이유는 무엇인가요??
위에 댓글다신 분이 말하신것처럼 두 점 (1,4),( -1,4)을 지난다는 조건만 주어졌는데 차수를 알 수 있는건가요?
시간이 좀 지났는데요....
저런 극한값이 두개가 주어지면 반드시 g(x)는 일차이하의 식으로표현될수 있습니다. ----이말은
(a,b), (c,d) 를 지나는 일차함수 또는 상수함수는 반드시 존재한다.라는 의도였습니다.
(a,b), (c,d)를 지나는 함수중 가장 차수가 작은 함수를 구해야 하므로
g(x)의 차수를 2차, 3차, 4차, 5차.....n차 로 잡지않고 1차함수로 놓은 것입니다. (1차항의 계수를 미정계수로 설정하면 상수함수도 포함되므로)