무한등비급수 공부법에 대한 생각
게시글 주소: https://orbi.kr/00037175454
칼럼은 초짜라 가장 쉬운 유형으로 들어갑니다.
-----------‐-----------------------------‐-----------------------------‐--------------------------
등비급수에서 물어보는 포인트는 간단하다.
1. 첫 째항 S1을 올바르게 구했는가
2. 공비 r을 제대로 구했는가
그 다음엔 S/1-r에 대입하여 답을 얻으면 된다.
순서는 상관없다. 어떻게하든 저 2개만 얻어내면 문제는 풀린다.
그렇다면 풀이 과정이 명백한 이 유형이 준킬러의 위치에 자리잡고 있는 이유는 무엇일까?
1번 또는 2번 중 하나가 복잡하기 때문이다. (간혹 둘다 복잡)
구하는 과정에서 의문점이 너무 많은 것이다.
이번 4모를 봐보자
제시된 조건만 따라가면 초기 넓이 S1을 구하는 건 2점짜리 문제일 정도로 쉽다.
이 문제를 틀린 대부분의 학생들은 아마 공비를 구하지 못해서 틀렸을 것이다.
(2번 포인트를 짚기 어려웠던 경우다.)
이 문제는 첫째항부터 구하기 어려웠던 경우다.
첫째항을 구할 여력이 됐다면 공비도 바로 구할 수 있다.
(1번 포인트가 어려웠던 경우다.)
결과적으로 1번 2번중 하나는 어려울텐데 이 난관을 어떻게 파해치면 되는걸까?
정답은 기출! 기출을 많이 풀면서 생각의 도구를 모아야 한다.
감이 안잡힐테니 직접 문제를 풀어보자! <<< 4모 푼사람들 ㅎ
(구체적인 풀이는 안썼으니 한 번 풀어보고 보시는 거 ㅊㅊ)
1. S1 넓이를 구한다.
넓이를 구하려 보니 반원과 직각삼각형으로 나눌 수 있다.
0 반원의 넓이<<<반지름을 아니깐 구할 수 있다
0 삼각형의 넓이<<< 빗변이 4인 건 안다.
어라? 나머지 변의 길이를 알거나 각을 알아야 넓이를 구할 수 있을 거 같은데? 직각삼각형 안의 직각삼각형이니 큰 직각삼각형과 닮음이고 여기서 변의 비를 알 수 있으니 넓이를 구하는 것도 문제가 없겠다.
2. 공비를 구한다.
공비의 기준을 원의 반지름으로 두자. 그러면 작은 원의 반지름 r을 구하면 문제는 풀릴 것이다. 문제는 어떻게? 작은 원과 큰 원이 접하고 있으니 중심끼리는 잇는다. 몇 개의 보조선을 더 그으면 r에 대한 직각삼각형을 그릴 수 있다. 피타고라스를 이용해 r을 구하면 된다. 다시 문제가 생겼다. 직각삼각형 중 A1A2에 해당하는 변의 길이를 모른다. 전체길이 A1C1에서 부분 길이 A2C1을 빼면 해당 변의 길이를 구할 수 있을 것이다. 다시 문제; A2C1의 길이는? 자세히 보니 한 점에서 원의 양쪽에 접선을 그은 모양이다. 원 중심과 C1을 이으면 각은
이등분될 것이고 각 A1C1B1은 삼각비를 통해 알고 있으니 이등분 각의 탄젠트 값도 얻을 수 있으므로 A2C1의 길이도 구할 수 있다.
생각 속에서 몇가지 의문이 풀리면 문제는 어려움 없이 풀린다.
의문의 해소는 기출을 통한 도구의 적립을 통해서다.
밑줄을 그은 것은 상황에 따라 의문을 해소할 수 있는 정형적은 도구이다.
다음은 몇 가지 예시이다.
(1) 각과 길이
1. 특수각 30 45 60
2. 직각삼각형에서 찾을 수 있는 여러 sin, cos값
3. 그냥 제시해준 값
4. 각의 이등분
5. 사인 코사인 탄젠트 반각 배각 덧셈정리
etc.
(2) 원
1. 중심각과 원주각의 관계
2. 호와 원주각의 관계
3. 현과 원주각의 관계
4. 원 2개를 다루는 방법(내접 외접 등등; 원끼리의 중심을 잇는다)
5. 원과 접선의 관계
6. => 몇가지 정리된 것: 할선정리 등
etc.
(3) 삼각형
1. 정삼각형
2.이등변 삼각형
3.내심
4.외심
5.무게중심
etc.
(4)변의 길이
1. 피타고라스
2.사인 코사인
3. 전체&부분
etc.
그리고 뭐 더 있겠죠? :)
결론은
기출을 푸실 때 무엇을 구해야 하는지, 또 그 의문은 어떻게 해결하였는 지에 초점을 맞춰 공부하고 많이 나오는아이디어는 따로 정리하며 풀어보셨으면 좋겠습니다.
단순히 생각없이 끙끙대며 푸는 건 의미없다고 생각하고 끙끙댈수록, 어떤 의문점을 해결하지 못했는지 어떻게 그걸 해결하였는지를 각인시키세요.
시간나면 도구들 몇 개 정리해서 올리겠습니다.
너무 당연한 내용이기도 하고 첫 공부글이기도 하니 아무도 안보는 새벽에 올리네요. 그럼 ㅂㅂ
0 XDK (+5,000)
-
5,000
-
https://namu.wiki/w/%EB%8C%80%ED%95%99%EC%88%98...
-
제일 못하는 분야인데 선방했다
-
4시에 ㅇㅂㄱ 인증함
-
스블 진짜 ㅈㄴ어렵네요 완강도 안 난 거 같던데 언제까지 끝내야 될라나 수1...
-
진짜 눈 감았다 뜨니 복귀네..
-
음
-
ㅈㄱㄴ
-
수1수2를 동시에?? 이거완전럭키빗치잖아
-
이제 개념 한 바퀴정도 돌린거 같은데 내가 지금 어디에 비어있는지 한 번 보고싶은데...
-
의지가 바닥나서 강제성이 있어야 그나마 공부가 좀 되던데 잇올에 고등학생도 많이...
-
아이큐를 발현시킬 수 없다면 그냥 숫자에 불과한듯. 내가 그렇게 똑똑했다면 수능도...
-
선배가 말아주는 .
-
듣기풀면서 43 44 45 18 19 20 일치불일치 +어법 되면 풀고 21 22...
-
님들도 경제단 합류
-
그게나야
-
80정도 일듯
-
수악2 왜 이리 어려움 11
빨리 어느정도 완성하고 미적하려는데 수2가 계속 안 되니까 미치게슴
-
으하하
-
덕코주세요 6
네..
-
1. 단어 40개 암기 2. 기출 하나 풀기 3. 오답 끝 단어 암기법)...
-
수능.. 특히 과탐 못하는데 기여한 능지
-
흠
-
옹..ㅜ 3
-
4시반부터 3
공부해야지
-
나름 고점 높다고 생각했는데 120/120s인 사람보고 지능의 한계를 느낌
-
아이큐 테스토 18
-
질문받아주시는분있나요?
-
그때가 138였던 걸로 기억하는데 지금은 떨어졋으려나.. 그때는 주변에 140대잌...
-
개념 + 유형별 기출문제집 회독을 해서 문제들이 어느정도 눈에 익었습니다.이미 제가...
-
마지막.. 비싸요
-
문디컬어떤가여 0
사실 메디컬 공대 그냥 이과계열을 가고싶어요 작수 언매 미적 생 지 2 3 2 2...
-
국어 현강 ebs 자료 이런거때문ㄴ에 김승리 현강 다닐까 했는데 인강이랑 큰 차이...
-
다들 똑똑하네 28
나만 또 지능도 외모도 여기 평균도 안되지
-
ㄹㅇ임뇨
-
이번에 안암 올라가요 ㅠ
-
수시 동국대 0
경영학과 목표인데 동국대식 1.4에 생기부 평타면 많이 어렵겠죠? 전부 다 경영으로...
-
오늘도선방 1
ㅈㄱㄴ
-
ㅂㅂ 6시 전까지 들어오면 나 게이임 ㅇㅇ
-
너무 낮게 나왔다고 상심하지 마시고 너무 높게 나왔다고 공식적인 석상에서 말하고...
-
난 8나옴.. 6
하..이거맞노
-
내신 3.3따리 작년국어수능집모7등급 수학3-4따리가 이만큼이뜬다고?
-
엔제 가격 0
보통 엔제 푸는 시기에 한달에 수학비용만 얼마나 드나요?(책값만요)
-
우리 사촌누나가 남자 캐릭터 둘이서 ㅅㅅ하는 글??을 개많이 써서 한 300만원...
-
굿 잘 찍엇나보구나
-
30분꽉채움 4
마지막꺼 5분쓴거같은데
-
아침일찍 감독관선생님들 모여계신곳에 가면 되나요?
-
이두컬 50키로 조지면 그만큼의 힘을 근육 부착 지점이 감당하고 있다는건데되게...
-
원래는 김동욱 국어 일클래스 듣고 있었는데 문개매가 좋다는 말을 들어서 고민중입니다...
굉장히 용두사미...

한 번에 쭉 쓰고 읽어봤는데.. 너무 구린듯
누군가 읽어 주겠죠새벽에 자주 보이시네요 ㅋㅋ
ㄴㅋㅋㅋㅋㅋ저만 2020 06 20 생각 난 게 아니구나

도구정리 존버풀리는문제랑 가끔 못푸는문제랑 차이를 모르겠음

오오 감사합니다무등비나 삼도극이나 사코법칙은 ㄹㅇ 많이 외워놓고 있고 그걸 최대한 다 떠올려보는 과정이 중요한듯.. 그런데도 작수 14번 덧셈정리 못떠올려서 결국 좌표계 도입해서 풀었던거 생각하면 열뻗침..ㅋㅋㅋ

기출 공부 가즈아근데 ㄹㅇ 덧셈정리+무등비는 제가 기출에서 못봤던거같은데 제 견문이 좁은건가요..? 아님 걍 좌표계같은 planB가 있어야 되는건가.. 그거 정석대로 풀어서 맞춘분들은 직관력이 좋으신건지 아님 제가 직관력이 떨어지는건지...
전 좌표계는 거의 안써본 거 같네요. 좌표평면 상에 도형을 그려준 게 아니니 보통은 도형의 특징에 따라 해석하는 게 해석하는 게 맞다고 봅니다. 또 덧셈정리론 '새로운 각'을 제작할 수 있습니다. 모르는 각이 있을 때 하나의 도구로서 접근할 수 있는 거죠. 도형문제에 대해선 원하는 각을 구하고 싶을 때, 여건이 된다면 언제든지 사용할 수 있을 거라 생각합니다.
제가 생각이 부족했던거같아요ㅋㅋ 사실 좌표계써도 결국 기울기공식 -> 덧셈정리로 가게 되더라구요.. 직선 기울기 구할땐 탄젠트덧셈 떠올리면서 도형만 봤을땐 못떠올린게 ㄹㅇ 한.. 저 문제에 낭비한 시간 ㄹㅇ 아까워 미치겠음..

아ㅏㅏ화이팅