행렬 영인자에 대한 질문과 -_-;; 모의고사 질에 대한 질문..?
게시글 주소: https://orbi.kr/0003675692
행렬 합답형 문제를 풀다보면.. 영인자를 이용한 풀이 혹은 반례를 이용한 풀이가 좀 나오는데..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://m.site.naver.com/1Abu2
-
분교 연세대 원주캠 고려대 세종캠 한양대 에리카 (분교중엔...
-
취업은 이직이란게있는디 입시는 그냥 한번하면끝이니…
-
장애인 (욕이나 비하 목적으로) << 진짜 입밖으로 꺼내는 거 보면 어떤 사이였든...
-
9처넌 ㅅㅅㅅㅅㅅ
-
반수로 2급간 올렸다더라 ㄷㄷ 대단함...
-
진로 취업 회사생활 학교생활등 다 괜찮습니당
-
필자 2종보통 강남에서 땀(공단) 필기 100점 기능 90점 도로주행 2트 현재 전기차 운행 3년차
-
가끔 오르비와서 헛소리하는 틀딱들 뭔생각인지 알겠음 4
장사 너무안돼서 심심하니까 수험생 커뮤에서 분탕치고 반응보고 희열 느끼는거임
-
전남의대 05학번 가정의학과 yo.yo분 어디가신거지 9
닉네임으로 검색하니까 안나오네
-
닉변 추천 받습니다 14
이 거지 같은 닉넴 빨리 버리고 싶습니다.
-
몇시간 단위로 담배피시나여??
-
가수들 끝음처리는 넘사네 진짜..
-
술 먹엄ㅆ더 3
신사 가여지
-
나 연애하고싶어 2
ㅠㅠ
-
설간호임?
-
제가 원하는 장르가 없어서... 그나마 예뻐보이는거 있길래 홀린듯이 300엔 넣고...
-
반응하며 읽어라
-
익숙한 오르비 2
크아악 드디어
-
높은 대학이 아니더라도 충분히 만족하는 사람도 있고 높은 대학이더라도 아쉬움을...
-
ㄷㄷ
-
리드 당하고싶아
-
군대갔다오면 5수생나이네 ㅅㅂㅋㅋㅋㅋㅋ 이게 맞나 님들은 그냥 현역때 안되면 바로...
-
가형킬러는 아직 힘들어… 통합 미적은 풀리는데 아직 소코마데다
-
본인이 학생인데.. 눈이 너무 높?나?
-
보면볼수록 전시우(시우) 장하권(너구리) 같음 ㄹㅇ 0
실력이고 자시고말고 하는 행동이 똑같음 그저 담원 탑의 표본 느낌
-
후배가 밥 사달라하면 어캄
-
우민화정책도 아니고 뭔
-
https://m.site.naver.com/1Abu2
-
근데 큐브마스터님들 바로바로 답해주는거 ㄹㅇ 대단한듯,,, 1
고등학교 졸업한지 몇년이나 지난분들도 있는거같은데 좀 가물가물할법도한데 아직도...
-
수특 구매 완. 영어는 우선 제외
-
여자고 근데 여자인것도 의미가 없는게 남자 현역이랑 나이는 같아도 나중에 취업할때...
-
https://orbi.kr/0001334997 거의 20년 전 글인데도 같은...
-
어느정도 시간 투자해야함뇨
-
옛날에 할때는 윤석열이 구세주다 이런 소리하는 폐급들 많았는데 흐뭇하네
-
현강서 t1m이라고 쓰시더니 진짜 t1을 부르시네ㅡㅋㅋ 개쩐다 ㅇ,ㅣ야
-
방탈출아다뗌 8
이라는말은좀그런가요..
-
아마 220일~230일차 이 정도까지는 계속 갈 것 같네요.
-
쇼메X유대종 귀염귀염 듀오
-
2회독은 해야할까요? 수완은 무조건 2-3회독은 하려구요
-
영어듣기 질문 2
영어듣기문제 풀때 보통 얘가 무슨말을 하는지 구체적으로 바로바로 해석되는게...
-
진짜가슴이웅장해질려그래
-
1. 압력 감소로 인해 마그마가 생성된다는게 무슨 말인가요? 2. 현무암질 마그마가...
-
되는 과 썼었으면 업적달성 할뻔했네 업적: 국어 3등급받고 서울대 2번 붙기...
-
2.27.
-
N제 하루컷 2
수학 n제 하루컷 해본 분들 있음?
-
오르비언들 10
-
장: 하체 근력 강화 및 협응근 발달+운동이 빨리 끝남 단: 하는 동안 숨이 ㅈㄴ...
-
협력병원이라 자교보호가 잘 안 된다고 들었는데
교과서에서는 영인자라는 용어를 사용하지 않을 뿐이지, 영인자의 개념은 그대로 사용하고 있습니다.
실수의 곱셈에서 ab=0이면 a 또는 b가 반드시 0이 되어야 하는데,
영인자라는 게 행렬의 곱셈 AB=O에서 A와 B행렬이 영행렬이 아니더라도 저 식을 만족시키는 행렬이 존재한다는 거잖아요.
역행렬이 존재한다고 해서 무조건 영인자인 것은 아니지만,
영인자이기 위해서는 반드시 각각의 행렬이 역행렬이 존재하지 않아야 한다라는 사실도 알면 좋겠죠.
참고로 영인자는 행렬 하나만 지칭하는 게 아니라 행렬쌍을 일컫는 말입니다. A와 B는 영인자이다. 이런식으로요.
영인자 라는 용어보다는 반례를 찾는다고 생각해야 합니다.
반례를 찾는 명제 판정은 적분 통계 등 합답형이라면 매번 출제됩니다. 이러한 문제에서 반례를 안찾았던것처럼 느껴지는 이유는 참이라는 보장을 못하는 문제에서 반례를 안찾고 틀렸다고 하고 넘어가기 때문입니다.
많은 사람들이.. 반례를 찾는게 아니라 하는데 음.. 반례를 찾는 거군요.. ㅜ ㅜ
어느 수준 까지 반례를 찾아봐야 하죠..? 행렬 합답형의 경우?
반례를 찾는건데 반례를 안찾아도 된다는 뜻입니다. 그런데 반례를 찾을 줄 알아야 합니다.
(본인의 수학 실력이 높아질수록 반례는 점점 필요없는 존재가 됩니다)
행렬 합답형에서 반례를 어느수준까지 찾아봐야 되느냐 그런말도 없습니다.
그냥, 증명이 되면 증명을 하는것이고, 그것은 참인 명제입니다.
증명이 되지 않으면 그건 명제가 틀렸으니까 증명이 안되는 것이고, 당연히 거기서 X표 그어도 됩니다.
본인이 의구심이 많이들면 반례를 찾는 것입니다. 그 반례 리스트를 외울 필요는 없습니다.
아마 그 의구심이라는 것은 2등급쯤 되면 점점 줄어드는걸 알게됩니다. 1등급쯤 되면 선지 식변형 좀 하다보면
'음 이건 안되겠네' 이런 것이 바로바로 나오게 될겁니다.
예를 들어, 작년 9평 ㄱㄴㄷ같은걸 보면 (B-E)^2=O이면 B=E이다.
이런 명제가 있는데, 과거 A^2=O이면 A=O이다 라는 명제가 틀렸고, 그것 때문에 반례를 찾아봤던 경험이 있다면,
이제는 그런 명제를 시험장에서 만났을 때 "당연히 틀렸네" 이렇게 할 수 있다는 것입니다.
즉 반례를 안찾아도 되는데, 반례 안찾아서 틀렸다고 긋는것이 자신 없으면 반례를 찾으시면 됩니다.
반례는 평가원에서 출제된 문제인 경우, 역행렬이 존재하지 않을 때 반례가 나오는 경우가 절대다수입니다.
반례를 절대 리스트화하지 마세요.
흐.. 감사합니다.. 합답형 문제를 풀때 포카칩님 말씀 참고해서 좀 더 차근차근 풀어봐야겠내요.. @_@! 감사합니다