대치동어둠의양적관계어드밴스드유리함수점근선궁극의얼티메이트해석법
게시글 주소: https://orbi.kr/00036710382
이번 글은 편하게 반말로 함.
제목을 보면 알 수 있듯이 이 스킬 비슷한 무언가는 쓸 일이 어지간하면 없음.
지금까지 쓴 칼럼들은 어려워도 쓸 일이 꽤 있었는데 이번엔 쓸 일이 없는거 같음
쓸 일도 없는 스킬을 왜 칼럼으로 쓰느냐? 심심한데 기분이 좋아서 그럼
다음부턴 쓸모있는 칼럼을 올리겠음ㅎ;
(추가 : 아니 이거 어쩌다보니 메인왔는데 혹해서 남용하지 마세요 취급위험.. 어지간하면 불리하고 사설문제에 가끔 유리한느낌)
일단 이 방법은 내가 처음 생각한 풀이는 아니고, 모 머리좋은 고2학생이 알려준 풀이임. 걔 좀 천재같음. 아니 천재맞음 ㅇㅇ. 아무튼 이 방법은 상황에 따라 풀이가 매우 단축되지만, 상황에 따라선 풀이가 매우 늘어짐.
혹시 머리가 아주아주아주 비상한 몇몇 학생들은(ex : 이 풀이 알려준 학생) 써먹을 수 있겠지만 일단 나는 못써먹을듯(쓰지 말란말). 시작합시다.
화1에서 유리함수가 어케 쓰이는지 모른다면, 참고용으로 이전 칼럼을 보고 오면 좋을듯
아 근데 사실 아직 유리함수 잘 안쓰면 이 칼럼이 쓸데가 없나?
걍 아직 유리함수 모르면 좋아요만 누르고 가줘ㅁㄴㅇㄹ
이 문제에서 몰수 비를 그래프로 그리면 아래와 같음
근데 알다시피 유리함수는 점근선을 가짐. 지금 넣어준 B의 몰수가 m/a면 점근선인건 아는데, x축 점근선을 모름. 그 높이를 대충 k라고 잡자.
근데 이 k가 뭘 의미하는지 미리 생각해보면, B를 음의개수로 무한히 투입했을 때 생성물/반응물이잖음. 그리고 한계 반응물은 계속 B임
그러면 C의 개수는 음수로 달리고, A의 개수는 양수로 계속 달릴거임. 이때 C/A는 k이고, 2/a가 될 거라는걸 알 수 있음. 이해 안될테니 식으로 써서 보여주면
ㅇㅈ? 계수 비가 될거임.
암튼 나머지 설명은 밑에 그림으로 대체함. 투입한 B의 양이 2일때 분수 값이 4니깐..
즉 점근선의 교점에서 유리함수 점을 찍었을 때, 넓이가 같다는걸 이용해서 식을 세우는게 이 풀이의 핵심임
1) 점근선의 의미를 생각해서 점근선의 값을 구하고
2) 넓이를 통해 식을 세운다.
근데 보다시피 식이 훨씬 더러움. 심지어 투입한 B의 양이 3일때는 유리함수 적용도 못하고, 반응식 깡계산 해야함. 뭐 이런..
그래도 마지막 마무리엔 유용할수도 있음. 이렇게. 참고로 이 문제에서 m=9 a=4
사실 이렇게 보면 이게뭐냐..싶을텐데 사실 아래 두 문제 예시로 더 풀건데 이건 또 매우 잘먹힘.
왜 안좋은 상황만 보여줬느냐? 혹시 혹해서 유리함수 문제마다 이 풀이 쓰려고 할까봐. 눈에 팍 들어오는 직관적인 상황에선 가끔 유리한데, 대부분의 상황에선 불리하니깐 안쓰는게 좋음.
그래도 아주 쓸 일은 없는거 아닌게, 평소에 유리함수를 자주 그려서 푸는 편이고 계산 직관이 뛰어나고 수학을 잘하는 학생이라면 이거 써도 될듯. 근데 그러면 이미 20분컷 만점일텐데.. 뭐 살아남기 모의고사 25분컷 50점을 위해선 유용할수도 있음 ㅁㄹ
암튼 다음 문제를 한번 이걸 응용해서 풀어보자
풀이 1
풀이 2
솔직히 이 경우엔 꽤 쓸모있는 것 같음. 이렇게 넓이를 구하기 편하고 그림이 유리함수로 미리 주어진 상황에선 생각보다 꽤 쓸모있음.
혹시 이 스킬을 쓸 생각이 있는 학생이 있다면, 앞선 문제처럼 유리함수 점근선이 오른쪽에 있으면 쓰지 말고, 이 상황 처럼 유리함수 점근선이 왼쪽에 있는 상황은 꽤 쓸만한것 같으니 이 때 써보면 좋을듯.
마지막 예제
풀이(귀찮으니 부피=몰수로 두고 풀음)
이 문제도 되게 유용함. 마지막 마무리에서 일차함수 기울기를 이용했는데, 투입한 B의몰수/C의몰수를 평행이동 하고 미분하는 느낌. 이거 말고도 다른 사설문제들에 적용 해 봤는데 꽤 풀리는 경우 많음. 유리함수 그래프가 이미 그려져있거나 그리기 쉽고, 왼쪽에 점근선 있으면 해볼만한 것 같음. 더 확장 가능성이 있어보이기도 하고..
핵심은
1)점근선의 의미 상상 및 값 추론(물질의 개수가 음수가 되는것을 허용하고 무한으로 극한을 보내기, 한계반응물은 고정)
2)유리함수 넓이 이용/유리함수 식 이용
이거 두개. 혹시라도 쓸 생각이 있다면 충분히 많은 연습을 하고 쓰는걸 권장하고 이 풀이로만 문제를 풀고 정석풀이를 연습 안한다면 수능 당일날 위험할 수 있으니 정석 풀이도 꼭 연습해보길 바람.
끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안녕하세요, 수능 국어를 가르치는 쑥과마늘입니다. 오늘은 2021학년도 9월...
-
4회차 말도 안되는 난이돈것같은데 제가 못하는건가요 ..
-
[공부글] 3년 입시동안 본인의 수능 시험지 운용 방법 정리 13
소개 -23,24 정시 수도권 약학과 합격 -25수능 건수의 안정, 지방치 적정,...
-
맛있겠노
-
수1 수2 미적 하루에 3개 하루치씩 다 풀만함?
-
정치적, 제도적 이슈와 관련된 메타가 있을때마다 추가됨
-
9모끝나고랑 비겨하면 집중력이 빨리 떨어지는거같은데 너무 많이남아서 그런가….
-
수학 고민시간 1
수분감 하는 중인데요 한 문제 풀 때 고민 얼마나 하시나요? 이제 처음 푸는 거에요
-
산책하다 3
준네 멀리왔음 여기 어디여;
-
흠 3
흠
-
정말이지 무시무시한 우연의 일치가 아닐수없습니다..
-
아따 날씨좋다 2
ㄷㄷ 이쁜이 발견
-
님들은 가족 아닌 여자애기 옷 갈아 입히는 거 가능함? 7
그럴 일은 보통 없겠지만 가족 아니고 부모님 지인 분의 애기 같이 걍 남인 3~4살...
-
운동하던 친구가 갑자기 대학가겠다며 공부를 하려고 하는데 전부 3등급이면 어디...
-
국어 유기 4
3모 국어 원점수 84인데요 수학이 4가 떠서 4월 한달동안 수학만 하려고 하는데...
-
개념 다 돌렸고 문제가 적은 과목이라길래 학평, 평가원 다 뽑아서 풀려는데 법과...
-
미친짓?
-
고속기준 시립대전전컴이 찐초고 중앙대 공대는 노랑인데 인문이면 고대 가정교육과 연초...
-
프리뷰 테스트 보고 모의고사 형태 시험지에다가 필기할 거 필기하는 거임? 큐이디 본...
-
뭐 때문인거지 트럼프로인한 전세계적 현상인가
-
오늘 공부한다리 2
삘 옴
-
어제 현금 많이 달러화 해뒀었는데.. 달콤하다
-
컴공보다는 나으려나..
-
필요하긴한데 하는게나으려나
-
수특독서 심리철학의 물리주의적 이론들에서 기능주의? 0
심리철학의 물리주의적 이론들중 기능주의를 쉽게 설명해주실수 있는 분 계실까요?...
-
가능할까요 4
학교와서 1시간 40분동안 오르비만 했는데 지금부터 공부하면 서울대 가능할까요
-
차이점은,,, 진짜 금을 연성해낸다는 것..
-
나
-
씨팔........................
-
어느정도 유베인 학생이랑 노베에 가까운 학생을 동시에, 아무 상처 안 주고...
-
롤하고 학교에서 수업듣고 정시 공부 언제 하실거에여
-
할거 추천 좀 25
롤 제외
-
돌려서 거절하는 상황이라던가 그런거...
-
이번학기에 군대가려고 휴학중인데 계속 떨어져서 9월에 공군 가게생김… 한 9달을...
-
평가원 기출에 기반한 진짜 농어촌(자연 친화)
-
맨날 3 4시간 자면 깨니까 피곤해 죽겠음 누가 나좀 한 10시간씩 자게 해줘
-
난 오만하다 9
그러니 오만덕을 내놔
-
체감상 한 수요일 목요일쯤인데
-
정족의 발전 인정좀
-
키스타트 끝나고 3회독 해서 다음 커리는 키스로직이 나을까요??
-
출석이 고민이다. 직접호명 소수수업은 어떻게 할까
-
오늘 다 풀기는 솔직히 힘들것같고... 수면패턴 바꿀겸 80문제만 더풀어야지...
-
그날 수업만 3갠데 차라리 일주일 연기 해주면 안될까...
-
각자 사정이 다 다르고 본인이 보는 시야가 100%가 아닌데
-
어케 산출하는거임? 나머지 과목은 추정치로 산출? 누백 사기 아님? 알려주세
-
시중N제를 사는거보다 강대나 시대 자료 작년꺼 당근으로 구해서 매일 푸는게 낫나용?...
-
벡터 넘겨서 계수합 1로 만든다음에 내분외분 파악하는 부분 듣고 있는데 첫번째 사진...
-
나는 0
한평생 지방에서 월 400,500받고 앵간히 살려고 태어난게 아니야 언젠간 저...
ㅁㅊ
음의 반응이라...
어떻게보면 화2를 끌어온건가
그런 느낌도 있고 화1을 뇌절의뇌절을쳐서 수리적으로 해석한 느낌
사실 이렇게 보는게 맞는듯
흠 좀더 찾아보고 올게요
아니 화1 머치동 강사들도 이런 스킬은 안 쓸듯...ㄷㄷ
wow..
저거 알려주신분 수학 고정100일듯;;
와 이건 진짜 신기하네 ㅋㅋ
생각지도못했다 ㅋㅋ
정신적으로 충격 받음 저게 뭐꼬
이. 이게 머노
누구는 1문제 푸는데 30분 걸리는데...
wow
밑에 예제 둘 다 깡계산으로 풀었는데 이게 능지차인가
당연히 저도 처음볼땐 깡계산..
화1에서 기울기도 땡큐한 건데 유리함수라... 대단하네요
뭔소린지는 모르겠지만 개추
한줄요약 : 그냥 생지해라.
안써도됨....
죄송합니다.. 생지러에게는 너무 어려워요..
물1 사세요...다항함수밖에 안 나오는 물1 사세요....
어림도없지 전기력 실계산문제!!
여러분 쉬운 물2하세요
이해는 못했지만 신기하니 좋아요 박고 갑니다
요즘에는 화학 문제 풀 때 '유리함수' + '점근선'까지 끌어와야 하는건가요?
어후... 타임어택이 예전보다 훨씬 심하겠네요.
아뇨 심심해서 쓴 글이고 이렇게까지 할 필요는 전혀 없어요
사실이런 풀이를 만들만큼 어렵게내는 과탐이 이상한거
오빠 제목이 너무 깐지나요
기출은 씹으면 씹을수록 새로운 맛이 나네요..