미분의 심화개념 질문요
게시글 주소: https://orbi.kr/0003658770
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학 4는 뜨지않음?
-
나초6졸업사진에 150명중에 가장얼굴작앗는데 60키로되니까 얼굴이 ㅈㄴ커짐...
-
제가 해보겠습니다
-
물1고인물분들 1
본인이 푼 N제중 좋았던거 추천좀요 현역이고 기범비급 풀고있는데 신유형(움직도르래...
-
1일차
-
cc 뚫고 붙은 입장에서 입학처 애미터졌다고 생각함
-
아이디 보내면 무료로 실시간 추합예측 현황이 왔었는데 모 사기업에서 저작권이 있다며...
-
재수생 n제 2
N티켓 -> 지인선 -> 드릴6 -> 드릴5 -> 드릴드2 -> ? ㅇㅇ?
-
한양대갔으면 저기 자주갔을듯..
-
수학 4가 경제학과는 용서를 못하겠다 경영은 되더라도
-
무료궁합인가 사주궁합 보고왔는데.. 나 결혼 늦게하는게 좋은 팔자라던데.. 약간...
-
국 영 탐 1이 쉬운줄 아나
-
그럴 수가있음? 내가그렇다는데 옆이더낫다함
-
우리 동네는 쫀득쿠키 100g 9000원대인데 여친 동네는 쫀득쿠키 130g...
-
지하철 게임 절대 지지 않는 이유
-
이거 짤라도 되겠죠?...
-
칼럼은 처음이기도 하고 지하철에서 할거 없어서 짧게 아이디어만 던져놓고 갈게요...
-
미치겠네
-
참고하세요
-
여자 성욕 9
여잔데 요즘 성욕 때문에 공부에 집중이 안됩니다 생리 전주라 그래서인지 뭔지……...
-
제가 돈이 없어서 트위터로 메가스터디 쉐어 하게 됏어요 계정주분이랑 시간 조정이...
-
삶의 만족도가 달라졌을까요
-
대성 19패스 0
대성 19패스 버전2 인가 샀는데 수강신청 안되는게 너무 많은데너원래 다 되지 않나요
-
지금 자리는 행정일이 지나치게 많아서 바쁘더라도 통번역 수요가 많은곳 또는 편한곳...
-
그렇다면 추천부탁
-
06년생입니다 작수 수능 44444이고 군대 가라는데(원래는 재수 할려고 했고...
-
결론부터 말씀드리면 갈거면 군수 생각하지 말고 가세요 가서 생활하다보니 생각보다...
-
의대증원여파인가 0
왜케 대학가기 쉬워보이지
-
염병
-
연금술사 책 소설 명언 명대사 모음 인상깊은 구절 좋은 글귀 문장 0
연금술사 책 소설 명언 명대사 모음 인상깊은 구절 좋은 글귀 문장연금술사전 세계...
-
1컷 50 2컷 48 3컷 44
-
올해는 황금돼지들로 맛있는 삼겹살 해먹어야지 ㅇㅈ?ㅋ
-
관독50점이면 퇴실인데 45점이라 그냥 안가기루햏다.
-
오티 안감 엠티 안감 개총 안감 종총 안감 동아리 안함
-
아직 나아갈 희망이있다
-
오늘은 혼자 여행이나 가야지 。◕‿◕。
-
0칸 추합 뭐냐 4
?????
-
05가 삼수라고요?? 11
세월 참 빠르네요… 05가 현역이었던 시절이 엊그제 같은데
-
신기하다
-
지금까지 일하고 있는데 점장님이 12시까지 온다는데 아직도 안오는데 전화 갈겨야겠죠…?
-
TEAM 05 아직 살아계시죠?
-
러셀더프 0
더프 신청했는데 두각처럼 qr같은거 찍어야하나요? 아니면 그냥 가서 보면 되나요?
-
3월부터 투입한다
-
어떤가요???
-
언제가나 이쁘겠지만 시간관계상 밤이 더 이쁜 대학 보고 낼 아침에 남은 대학들 보러가야할것같운데..
-
어싸가 n제임? 3
강기원이 만든 엔제인거임?
아래 게시글에도 있었던 것 같은데,
f(x)=x^2sin(1/x) (x≠0), f(0)=0으로 정의된 함수는,
x=0에서의 미분계수 f'(0)은 0으로 존재하지만,
x=0 근방에서 진동하는 불연속함수기 때문에 극한값이 존재하지 않아요.
따라서 좌변인 우미분계수(=좌미분계수)는 미분계수의 정의에 의해 구해보면 0이지만,
우변인 도함수의 우극한값은 존재하지 않는답니다.
질문에 답변드리자면,
미분가능이 전제된 상태에서 그 점에서의 미분값을 미분계수라고 합니다.
하지만, 도함수의 연속성과 미분가능성은 별개의 문제로,
좌미분계수(=도함수의 좌극한값)와 우미분계수(=도함수의 우극한값)가 일치하지 않더라도
미분계수(=도함수의 함수값,미분값)는 존재할 수 있습니다.
아기나라님에게 태클을 걸자면, 미분계수와 도함수의 극한값은 다른 개념입니다. f(x+h)-f(x)/h 라는 식에서 h가 0+0 으로 가면 우미분계수이고 h가 0-0 으로 가면 좌미분계수입니다.
제 글을 잘못 읽으신 것 같은데 저는 미분계수와 도함수의 극한값이 같은 개념이라고 한 적이 없습니다.
2번째 댓글에서 좌미분계수(=도함수의 좌극한값)이라고 하신부분에서 = 의 표현때문에 제가 자의적으로 해석한것 같습니다. 하지만 = 자체를 쓸수 없는 개념들입니다.
예를들어 f(x) = x (x <= 1), x+1 ( > 1 ) 이라고 정의하면 x=1에서 좌미분계수는 1이지만 우미분계수는 무한대입니다. 이때 좌미분계수와 우미분계수가 같지않아 미분 불가능한 케이스고요, 도함수의 좌극한값 우극한값은 둘다 1로 같죠.
예를 들어준 함수 f(x)는 x=1에서 좌미분계수,우미분계수가 모두 1입니다.
미분하기 이전에 함수가 연속이지 않아 미분가능성을 논할 수 없는 케이스겠네요
아기나라님께서 오개념을 가지고 계신데 우미분계수는 무한대입니다. 도함수의 우극한이 1입니다.
쪽지 보냈습니다. 답장 부탁드립니다.
도함수의 극한값이 1이되는 것은 미분하면되는것이니 알겠습니다만 미분계수는 어떤식으로 구하는거죠? 평균변화율의 극한이 순간변화율이되서 미분계수이니 평균변화율의 극한값으로 계산하면 0/1 이 나와서 우미분계수가 무한대다 맞아요?
결국 중요한건 미분계수는 불연속이어도 정의가능하다? 인건가요
미분계수는 lim x->a f(x)-f(a) / x - a 혹 lim h -> 0 f(a+h) - f(a) / h 의 극한값입니다.
이게 미분계수의 정의이고, 이 극한값이 존재하면 미분가능한겁니다.
불연속이면 저 미분계수는 존재하지 않아요. 정의를 못하는 거죠. 따라서 미분 불가능한겁니다.
그러면 예를 들어주신 우미분계수가 무한대고 좌미분계수는1이라는것은 무슨의미시죠?
좌 미분계수는 lim h -> 0-0 f(a+h) - f(a) / h , 우 미분계수는 lim h -> 0+0 f(a+h) - f(a) / h
미분계수는 lim h -> 0 f(a+h) - f(a) / h (좌 미분계수와 우 미분계수가 존재하고 그 두 값이 같을 때)
이 3개의 차이를 잘 생각해보셔요.
그리고 제가 예로 든 함수에 적용해보시고 미분가능의 정의를 제가 위에서 언급한 사실에 따라 생각해보셔요.
저 명제에 대한 반례를 제가 예로 든 함수로 들 수 있겟네요. 그리고 좌미분계수, 우미분계수는 교과과정에 나오지 않는 용어입니다.
그러면 미분계수 용어의 성립자체는 불연속이어도 상관이 없다는 뜻인가요? 단순히 미분가능성을 정의 할 때만 좌우의 미분계수가 같아야하는건가요?
네 맞습니다. 좌우 미분계수가 같으면 미분계수가 존재하는 것이고 이게 미분 가능하단거죠. 좌우 미분계수가 다르거나 존재하지 않으면 미분 불가능한겁니다.
반례 f(x)=lx-al 라고하면 안되나요? 알텍에서 도함수 만들때 그 함수가 x=a에서 미분가능해야지 뭘 만들던지 말던지 한다고 빡선생님께서 그러시던데
f(x)=|x-a|라고 한다면, 글쓴이가 질문한 내용에서 좌변은 1, 우변도 1로 식이 성립하게 되어 반례가 되지 않습니다.
그니까 도함수가 불연속일수있으니까 거짓인거죠??