행렬 조금 많이 이상한 문제
게시글 주소: https://orbi.kr/0003255464
좋은 풀이를 구합니다ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이 또한 닌창섭의 은총이겠지요..
-
존나 우울하네 ㅅㅂ 재수끝나자마자 먹어야하나 아님 지금부터 먹어야 하나 착잡하다그냥
-
좀 이런 느낌 아니냐 근데 눈을 왜 저렇게 맘들엇지
-
두시간동안 0
레몬멜론쿠키레몬멜론쿠키레몬멜론레몬멜론쿠키레몬멜론쿠키 쿠키 듣고있었음
-
이날개예쁨... 11
-
피글린이 내 다이아 갑옷 뺏어감 ㅠ
-
잘지내니 4
잘하고 있겠지 그래.. 보고 싶다 그냥..
-
큰거왔다 14
-
너로 지브리 사진을 만들엇서
-
밤 12시 이후 무서운 릴스 안뜨게 하는 법 생기면좋겠다 12
https://www.instagram.com/share/BAKnx8h-Os 이...
-
나는 짜피 둘 다 포함될텐데
-
일루와잇
-
ew평평q 8
컷
-
요즘 꽂힘
-
확통질문 5
이거 이렇게 풀어도 괜찮아요?
-
가야만 해
-
학사 전공이 중요한가
-
갈 곳이 없다
-
과외쌤이 오르비언이면 18
성적내기해서 이기면 덕코 삥뜯기 했을거 같아요
-
ㅋㅋ....;;;;
-
응응
-
지문 하나 풀면 모든 힘이 다 빠져서 하루에 2개는 도저히 못 풀겟음심지어 하나...
-
꿈나라 2
-
그 웃음도나에겐커다란 의미
-
사실 난 남들이 힘들어하는걸 하고 잇나봄
-
대 - 성 균 관 대 킹고킹고에스카라
-
돈내야하네
-
훠궈먹고싶다 17
-
트러스를 풀다 어싸를 풀다
-
이거들어바 6
굿
-
평가원/교육청 기출문제를 이용한 스토리텔링 전글에서 영감을 얻었다
-
대체 무슨 매력이 있는걸까
-
누구 만나는거 무서움
-
국어 비문학 공부할 때 시간이 얼마나 걸리든 그냥 이해될 때 까지 계속 읽으면 되나요?
-
배성민쌤 말고도 알려주는 쌤 계심?
-
사람이 어떻게 될까제가 실험해봣음
-
나 연애하는중 1
나랑
-
열반햄 어디가심
-
작년 11월부터 지금까지 새르비 멤버임
-
맥주마실 타이밍을 놓쳤네
-
첫 n제로 엔티켓 시즌1 빅포텐 시즌1 풀었고 정답률 90퍼 정도 나왔음요 이...
-
안녕하세요 현역이고 지금부터 영어 인강을 들으려고 하는데 누구커리를 탈지 고민되서...
-
신뢰도 팍 떨어지네
-
수면임
-
어떻게 사는건지 되게 신기함
-
ㅜ푸리 9
사진 다 안올라가서 재업 공간지각능력을 활용하면 두번째 사진, 세번째 사진 바로...
-
이러면 사람들이 팔로우 해주겠지??
-
오늘의 잘한 일 2
기타 (56%)
4번이요. ㄷ은 그 때처럼 하거나 혹은 다른 식으로 증명할 수 있고, 그러면
O=(A^2 -AB+B^2 )(A^2 +AB+B^2 ) = A^4 +A^2 B^2 +B^4 이니까 ㄱ도 참이고요.
ㄴ은 ㄷ증명과정에서 조금 생각해보면 반례가 나오는데
A=(0 0 // 0 1) , B=(0 1 // 0 0) 이요~
ㄴ. 에서 제시하신 반례는 조건식에 대입하면 영행렬이 아닌 A가 나와 조건을 성립하지 않는 것 같습니다 ^^;;
아 ㄴ 맞는데 제가 또 계산에서 실수를 했네요..ㅎㅎ 죄송합니다.. 따로 올리겠습니다~
ㄱ에서 인수분해가될려면교환법칙되야되지않나요? 결론적으로 조건이용하면 ㄱ이 참이긴한데
ㄱ.자체는 주어진 조건만으로 보일 수 있는 게 맞습니다. 다만 그게 성립한다고 교환법칙이 성립하는 지는 별개의 문제이겠죠ㅎ
ㄱ. AB=A^2 + B^2 이므로 A^2B=A^3 + AB^2, A^2 B^2=A^3B + AB^3 = A^2 AB + AB B^2 = A^2(A^2 + B^2) + (A^2 +B^2)B^2 = A^4 + 2A^2B^2 + B^4 이므로 A^4+A^2B^2+B^4=O(참), ㄷ.도 전의 syzy님 풀이로 참인데.... 결국은 ㄴ.이 문제네요. 반례라..... 쉽지않네요.
ㄱ은 주어진식 왼쪽오른쪽에 A, B열심히곱하면 나오구요.
ㄴ, ㄷ은
A = 0 0 , B = 0 1
1 0 0 0
이런행렬 반례가 있네요
써주신 반례는 여전히 조건식을 만족하지 못하네요.^^;;;
AB = ( 0 0 / 0 1) 나오잖아요.^^
ㄴ도 ㄴ이지만 ㄷ도 결코 간단하지 않습니다. 예전 syzy님의 풀이에서 우변이 영행렬이 되는 부분이 약간 미묘한데 그걸 엄밀히 보여야 정답으로 인정될 수 있을 것 같습니다. 그리고 다들 ㄴ의 반례를 고민하시는 것 같은데... 증명은 불가능할까요? ^^;;
그쵸....^^;; 사실 좀 미묘하긴 하지요.ㅎㅎ 언뜻 드는 생각이 심한 노가다...밖에는 없어서 그냥 인정하기로 한 것 같습니다.ㅠㅠ