귀납적 추론 문제가 어떠한 정당성을 가지나요?
게시글 주소: https://orbi.kr/0003232501
제가 수학 공부하다가 가장 먼저 당황했던게 그런 문제 였습니다
특히 수열 있으면 무조건 3개 항 구해서 계차 수열로 만들어서 일반항 구하는거
저는 그게 용납이 안되더군요
모든 문제가 그렇게 되는것도 아니고 어떤 문제는 함수식 세워서 풀어야 되거든요
그럼 이건 수학이 아니라 암기가 되는것 같고
그리고 이번 수능 27번인가 그것도
결과적으로 그냥 귀납적으로 구하긴 했습니다만 뭔가 꺼림칙 했습니다.
저는 그냥 그렇게 푸는건 야매고 어떤 공식적인 풀이가 있는 줄 알았습니다
그런데 아무리 찾아봐도 없더라구요
저같은 경우에는 항상 연역적인 풀이를 이용해서 풀었거든요
혹시라도 연역적인 풀이가 불가능한 경우에는 수학적 귀납법을 사용해서 검증했어요
물론 모든 문제가 다 그렇게 단순 나열이라는 것은 아닙니다
분명한 어떠한 시각적이고 직관적인 정당화가 사용된 것도 있어요
예를 들면 이번 일차변환 문제에서 그림 그려서 푸는 경우 처럼
그러나 아닌 경우가 너무 많네요
그리고 또 이런 문제라고 해서 다 그냥 쉽게 풀리는것도 아니며
이런 문제가 묻는 사고력의 방향도 어떤 것인지 압니다만
그래도 뭔가 꺼림칙한 느낌은 감출수가 없네요
예를 들면 도형 관련 무한등비급수문제는 대충 풀수도 있지만
완벽하게 닮음임이 증명가능하지 않나요?
1. 제가 궁금한건 고수분들은 연역적인 풀이를 이용해서 푸시나요
아니면 그분들도 그냥 몇개항 나열해서 푸시나요
2. 그리고 이렇게 정당화되지 않은 추론을 사용해서 푸는 문제가 국가 고사에서 나올수가 있는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
괜찮은듯
-
tex.com/npay
-
학교 어떻게 생겼는지나 봐야지 ㅋㅋ
-
꿈 내용이 재입학했는데 시험 말아먹어서 예전생기부 복구하려고 행정실가서 싸우는...
-
ㅋㅋㅋㅋㅋㅋ
-
올해 상지한은 별들의 전쟁일까.... 근들갑일까
-
커뮤니티를 보면 가끔 그래 다들 자기들만의 사정이 있는거 같아
-
생명과학1 노베 0
노베 고능아라는 전제 하에 매일 하루 3시간씩 생명하면 백분위 50가능?
-
논술 문제는 잘풀엇는데 ㅅㅂ 최저 떨함ㅋㅋㅋㅋ
-
물어봣다가 언니랑 엄빠한테 ㅈㄴ 혼낫다…………… 재수 맘 먹은 애...
-
난 까였는데 3
약속 다시 안잡아주네 따흑..
-
낼 미용실가는데..
-
으응
-
그날 봐도 아는척 하지 말아주세오
-
약술형논술어떰? 1
친구가 반수하고 싶은데 얘가 좀 국못수잘이라 인서울 하위권이나 지거국만 가도...
-
양민학살한번해봐?
-
피램으로 기출분석+ 주간지 + 수특 깔짝하면 5시간 예상되는데 ㅅㅂ 말이되나 나의...
-
멜론송이도 있네 7
오
-
나도 가야하나
-
일단 중간고사 성적이 아직 나오진 않았지만 재입학한다고 내신을 더 잘볼 수...
-
난담배가싫어 6
응
-
숨은 그림 찾기는 존나 골 때리긴 하네...
-
3수 생각을 하고있습니다 제가 대전에서 중고등학교를 졸업하고 재수할때도 대전에...
-
SKT 해킹에 中해커 주특기 백도어 악성코드…"주체 단정 어려워" 0
중국 기반 공격자 주로 쓰는 'BPF도어 기법' 확인…"오픈소스 악성코드"...
-
ㅈㄱㄴ
-
곧연휴있음? 5
언제????
-
5월 모고 준비해야돼서 딱히 놀 수 있을거 같지도 않네 고3인생 너무 좆같다
-
생윤 너무 재밌다 11
사문은 너무 현실적임
-
간첩이 대선 2위…정보전선 뚫린 '이 나라' 망했다 2
━ [제3전선, 정보전쟁] 베트남전쟁 정보전 오는 30일은 남베트남 패망 50주년이...
-
연대인문논술 준비하고 싶은데 가능성 없는 거면 안 하려고요… 정시가 애매해서..
-
내신 문제 오류 진짜 많음..
-
가족끼리 서울로 간다고 해서 시험 끝나는 당일하고 5월 6일 대체공휴일만 놀 수...
-
찍맞이나 시험장에서 말리는거 없고 머리는 평균 이상이라고 가정 완전 운의 영역임?
-
자살하고 싶은데 위로의 말 좀 해주라. ㅇㅇ
-
ㅈㄱㄴ
-
원래 전국에 단 4명이었는데
-
잡담 태그만 달아야 하는데 실수로 반대로 함... 놀라서 호다닥 지워버림 아무도 못 봤겠지
-
애매한 대학보단 효율 최강인 것 같은데...
-
올해부터 자퇴후 재입학이나 1년꿇기 엄청 늘어날듯 10
안하고는 방안이 거의없음
-
내신 1학년 1학기부터 망치면 방법은 자퇴 후 재입학밖엔 없는거? 09 이후 애들 기준 ㅇㅇ..
-
난이도가 천자만별이네
-
도저히못하겠다 4
허리가아파 좀 걷다와야지
-
그래서 독서하기 월요일 시험이지만 일단 이건 다 읽고 시험칠거야
-
공대 가산점 3프로면 사탐 만점이 더 높지 않아요?
-
사진은 대략기능들 사진구현(근데웬만하면 텍스트나 말로설명하기쉬우면 그렇게할예정) 특이점은온다
-
가루비 포테토칩 와일드콘소메맛 + 시오 야키소바
-
답률 살ㅈ짝 궁금한디..혹시 표 갖고계시면 올려주시면 그랜절올리겟스빈다...
-
적정가 120달러
-
독서실에 박아두고 먹어야지 ㅋㅋ
-
으으 7
먹기싫어 이게 뭐야
고수는아니지만.. 저는 연역적(?)으로해요.
근데 수학적귀납법풀이도 연역으로 보시나요??
이번27번이 혹시 점이동인가요??
조금 나열해보고 규칙성 감 잡은 다음에,
점화식으로구했어요
그러고 확인절차가진다음에 일반항구한거같네요
네 수학적 귀납법 풀이는 조금 애매한것 같은데 사례를 찾는것은 귀납적이지만 증명과정을 통해서 완벽하게 되지 않나요?
와 그리고 27번을 점화식으로 구하시다니 대단하시네요 ㅋ 저는 시간이 없어서 그냥 그런가보다 하고 풀었거든요
지금 생각해보니 무슨배짱으로 점화식을 떠올렸는지 모르겠네요..ㅋㅋㅋ
수학적인 풀이를 말씀하시는 거라면
점화식풀이(=수열귀납적정의풀이)도 수학적이라고 판단되요.
수학적귀납법풀이라고 제가 위에 잘못달았네요 ㅎㅎ; 점화식풀이요 수열의귀납적정의랑 헷갈림..
연역적으로 푸는게 맞고요, 완성된 수열로 규칙성 찾는게 아니고, 규칙의 반복성을 피부로 엄밀하게 느껴서 3항정도에서 계차로 끝을 본다는게 더 정확하겠네요..
네 답변 감사합니다. 피부로 엄밀하게 느낀다는 정의가 정확하겟네요.