회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00032292971
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중국만 만나면 다 썰어버려
-
둘 중에 하나만 해야한다면 뭐해야할까용
-
음??
-
1. 내신을 망친다 2. 내신이 나쁘지 않지만 정시가 더 유리하면서, 때때로...
-
얼버기 1
다들 잘잤나요
-
샤가프 법칙:...
-
g'(e) 는 오른쪽상황에서 음함수 미분해서 구하면될거같긴한데 극한식은 계산을...
-
230722 조건 (다)에 적분과 미분을 다 집어넣은 이유는 잘 모르겠지만, 이...
-
익숙해지니까 크게 불편한건 없네
-
AI 교과서를 도입했슨 대통령 권한대행을 해봤슨
-
서울행 흐흐 6
OOTD
-
현실적 불가하죠?
-
시간만투자하면 다풀수있나여
-
오르비도 인터넷이라 좀 유별난 사람이 있는듯 ㅋㅋㅋㅋ 1
이게 유별남의 기준을 뭘로 잡아야할지 모르겠는데 같은 질문 반복적으로 올리거나 특정...
-
ㅈㄱㄴ
-
큰 좌절을 겪음 1
일반고고 서울대 물리학과 쓰려했는데 1학년 때 지각한 거 때문에 1등인데 밀려서...
-
기차지나간당 1
부지런행
-
프리랜서 디지털노마드 이런 거 보고 "언제 어디서나 일할 수 있다" → 현실은 언제...
-
이번엔 진짜임
-
기상 3
-
배고파
-
걍쪼개다가옴ㅋㅋ 현강은 저렇게 썰도 많이 풀어주나?
-
내장 무한리필이라는데 술 참아야 됨
-
대학 붙기 전까지 단 하루라도 게으르게 지낸다면 즉시 삶을 포기하겠습니다 예외...
-
풀영상 보니까 아주 기가 막히네 ㄹㅇㅋㅋ 이건 아주 빙산의 일각이지 생활비를...
-
얼버기 6
꿈자리가 사납군
-
재미로 연애운 봐달라고 했는데 내 성격 딱 저거임 ㄷㄷ
-
이 성적대면 중경외시 라인인가요?
-
이제 3
자야겟네
-
했습니다~ 7
-
ㅇㅇ...
-
고3 마지막 내신이라고 모의고사 공부 안 하고 3주를 내리 내신에 쏟았는데...
-
액을 꿀꺽꿀꺽 3
오고곡 뷰읏ㄹ뷰릇
-
가까이 가고 싶다
-
꿀꺽꿀꺽 23
-
지금 방충망사이로 소나무가 찢고 들어와서 벌레가 개많아. 0
어떻게 될지 알지?
-
덕코꿀꺽 0
꺼-억
-
돈내놔
-
돈내놔
-
.
-
꺾마님 2
어디가심
-
국밥 돈까스 제육 짜장면+고기튀김
-
오노추 3
-
다음기회에~ 0
.
-
. 화력 다죽엇네 ㅋ
-
고민 있어요 6
1. 돼지국밥 2. 마트 다녀와서 밥 해먹기 지금 뭐 할까요
-
돈을 내놔
-
사랑한다잉 6
나자신
네 2019 연대 특기자 보고 만든 문제 맞습니다
답도 그거랑 같구요
설의 눈님 답안
헤헿
Pafnuty Chebyshev님 답안
fx=1, gx=(x-1/2)^3
??
앗이게아니라
임의의 이차함수...
안녕님 혹시 뼈해장국 좋아하시나요?

네 카톡주세요
주라고 주란말야 왜 내 뒷조사만 하고 카톡을 안줘f=(x-1/2)^4
Let g(x) = x^2,
f(x)g(x) > 0
님 저너무슬퍼요
이거 풀면 연대 수석합격임

아까 그 문제 맞아요
발문 보면 알죠모든 g에 대해 만족하는 하나의 다항함수 f를 찾는거에요?
아니면 모든 g에 대해 대응되는 f가 존재하는걸 보이라는건지
하나의 f요
f가 다항함수인데 안 되지 않나요??
임의의 이차함수...
해설
2019학년도 연세대 특기자전형 두번째 문제를 약간 변형했어요
https://m.blog.naver.com/yh6613/221575889960?view=img_5
g(x)=ax^2+bx+c라고 하면
f(x)g(x) = ax^2f(x) + bxf(x) + cf(x)죠
a,b,c는 임의의 실수니까 결국 조건이 기출문항과 동일해요
그러며는 h'(x)=f(x)g(x)에서 h(1)은 항상 0인데 h(0)의 값을 모르지 않나여
아뇨아뇨 적분을 진행한다면 fg의 부정적분 k(x)에 대하여 k(1)=0임을 알 수 있지만 (f의 원시함수, 그 원시함수에 1을 집어넣으면 0이니까) k(0)=0이란 조건이 없어요..
그 풀이대로면 f=x, h=½x^2-½, i=⅙x^3-¼x^2으로 끌어올려도 성립한다는 것이 됩니다
적분의 가장 마지막에 남는 ch(x)에 1과 0을 집어넣잖아요? 이때 ch(1) - ch(0)에서 h(1)=0이지만 -ch(0)이 남아요
그거 그대로 h, i, j에서 계수비교 해주면 풀리는듯? 맞나?
putnam competiton 냄새가..
뭔가 수능이랑은 많이 다른 느낌이긴 하네요 확실히
푼듯..?

제가 발문을...좀 이상하게 잡았는데g와 무관하게 하나로 결정되는 미정계수 없는 f(x)를 구해주시라 그거였어요
엥???? g와 무관하게요???ㅅㅂ 다시풀어야겠누
만들고 생각해봤는데 개어려움 ㅠ

범함수 I(f)에 대한 변분법..
그뭔....10...시바껏 인간승리다
아 잠만 f(0)=/=0이네요 ㄱㄷ
어 이거 맞음! 모법답안이다!
ㅠㅠㅠㅠ수고했다고 한마디만 해줘요 시부레ㅠㅠㅠㅠ

설의 눈 님의 수학실력이 +1 되었습니다!ㅎ헿헤