기하와벡터 정말 잘하는법...
게시글 주소: https://orbi.kr/0003212061
너무나도 간절합니다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
휴학하고나서 수능 n년 도전하고, 대실패 후에 원래 학교 복학해서 다니고 있습니다...
-
나 비호감임? 4
ㅠ
-
월간오해원보는중 2
진자 옙브네
-
근데 내가 사서 달고다니면 개꼴값떠는것같아보일까봐 안샀음
-
레버취 1
잘게요:)
-
잠시 휴릅합니다 11
공부에 집중해야하는 시기같아요 목표를 이루기에는 아직 부족한 실력입니다 인스타도...
-
과제를미룬자의최후.. 16
수면압수......
-
아 풍요롭게 지내려면 지금 돈 모으는게 맞는 것 같은데 노느라 너무 많이 사용했네.. 아껴야지
-
내 할 일도 너무 많고, 미래에 대한 뚜렷한 목표도 생겨서 그거에 대해 정진하느라...
-
이해원N제 0
이해원 N제 작년에 풀었는데 이번에 나오는거 풀까? 재탕 50%는 있다는거 같던데
-
안보이지 구글로 들어오면 보이는데
-
강아지 하실 분?
-
으흐흐 벌레랑 3판만 하실분
-
엄…기은 0
오늘부로 엄기은지지를 철회한다 오늘부터 지지관계에서 벗어나 엄기은과 나는 한몸으로...
-
감사합니다
-
휴식 끝 2
다시 1주일 동안 달려야지
-
잘래그냥 4
잘래그냥 잘자요!!! 이 기요미 들아!!!!
-
6모 수학ㄱ? 8
같은학원에서 접수하고 점심시간에 46문제 완답여부로 승패결정
-
여러분 잘자욥♡ 4
내가 항상 응원하는거 알지♡
-
[첫 칼럼] 합격자가 말아주는 고려대 논술 사고과정!!! 8
안녕하십니까 수리논술러 fr0mhell 입니다! 이번 칼럼에는 작년에 처음 시행한...
-
한국시리즈 야구장에서 5회부터 실모 풀면 됨 ㅇㅇ 그 성적이 수능장 환경변수 고려한 찐 실모임
-
뭔가 에스컬레이드가 더 신뢰감이 감 미적 엑셀트러스 공통 엑셀 산 거 다 풀고...
-
2025년 3월 3주차 韓日美全 음악 차트 TOP10 (+3월 2주차 주간VOCAL Character 랭킹) 6
2025년 3월 2주차 차트: https://orbi.kr/00072602243...
-
3더프에서 남는 사탐 시험지 중고마켓에 팔아도 문제없죠? 0
궁금하네요
-
학원 추천 0
독재 학원처럼 자습 위주인데, 모르는 거 질문할 수 있는 질답 조교 계신 곳 있나요?
-
저도 좋은 꿈꾸러 가볼게요!
-
어삼쉬사라 돈낭비라는 얘기 많던데 그냥 쉬는시간이나 점심시간에 가볍게 풀기 좋은듯...
-
왤케 볼게없ㄴ노
-
충치생긴듯 1
나처럼 양치 열심히 하는 사람이 어딨다고 젤리 먹는데 치통이 확..
-
2025 수능에 비해 평이하다고 봅니당 전반적으로 역학이 무난하네요. 준킬러인...
-
수학 N제 추천 5
1. 지인선 N제 22번 15번이 좀 어렵긴 한데……… 풀고 난 후 쾌감 지림...
-
기파급 하고있는데 가독성이 좋아서그런지 영상보다 인강보다 더 이해가 잘됨.....
-
진짜 자야지 11
모두 잘자
-
한종철 생1 기출 문제집 좋나요?
-
ㅈㄱㄴ
-
힘들다 해보자
-
이과분들
-
식단 ㅇㅈ 2
운동 꾸준히 할거임 시발 감기만 빨리 낫면 좋겠다
-
토욜날에 혼자 집에서 롤하다가 정병걸려서 오르비도 안하고 혼자 기타치다가 뻗었는데...
-
자기가 못생각하니 저 풀이의 실전성은 별로다 이거 곱씹어볼수록 너무 웃긴말같음...
-
파데+쉐이딩은 과하나?
-
잇올갈까 러셀갈까 일단 모교는 절대 안감ㅎ
-
어그로 정말정말 죄송합니다…저 정말 간절하니 한번만 글 읽어주십시오 ㅠㅠ...
-
그거 그냥 *******이잖아 뭐하러 하는 거지 할거면 ******던가
-
양 적은 사탐 뭐 있음? 사문? 생윤?
-
야식사러편의점가기 11
뇸뇸뇸
-
알바를 해도 2
월급날 까지는 기다려야 되겟구나 이번주에 엄마한테 용돈 받긴 함
-
선행학습 금지법말고 전국민 메타인지 올리기 운동을 하는게 더 도움이 되지 않을까 이...
벡터는 크게 대수학적 활용과 논증 기하학을 벡터로 해석하는 것 두가지로 분류할 수 있습니다.
벡터의 대수적 활용은 보통 어렵지 않으니 패스하고
결국엔 기하에서 벡터를 적용하는 것이 관건이라 할 수 있죠. 공간도형과 이차곡선 역시 마찬가지로 대수적인 부분보단 논증기하에서 약하기 때문에 털리는 겁니다.
따라서 논증기하를 잘하면 기하와 벡터는 커버됩니다.
그니까 지금 당장 서점에 가서 에이급수학이라던가 고난도수학 따위의 교재를 사서 중등기하를 공부합니다. ㄱㄱ
중학교 개념에 충실히하란 말씀이신가요??.
중등기하 라는 건 아마 중고등학교 기하를 이야기하시는 게 아닐까요.. 그리고 실제로 중학교 2,3학년 때 나오는 기하 (요새도 다 배우지요?)를 적절히 잘해두고 응용할 줄 알면, 어려워보이는 고등학교 기하 문제라든가 수능 기하 문제들 중 상당수가 더 쉬워보일 거라는 생각이 듭니다.
기하와 벡터의 경우 단원이 일차변환, 이차곡선, 공간기하, 벡터 이렇게 4개의 과로 분류할 수 있는데요,
일차변환 이차곡선 같은 경우보다는 공간기하와 벡터에 대해 고민이 있으신듯합니다....
공간 기하의 경우
기본 평면 기하에 대한 이해가 충실하여야 공간에 대한 이해가 가능합니다.
일반적으로 공간 기하는 원, 삼각형 으로 나누거나 쪼개어 지게 되는데, 여기서 평면기하에 대한 성질들을 잘 아시면 좋습니다. (가령 5:12:13 의 비율이 나오면 직각 삼각형임을 안다거나....)
또한 공간기하는 묻는 대상물이 대부분 각이나 길이 면적 정사영등을 묻게 되는데
이러한 공간기하의 문제를 해결할수 있는 키포인트는
공간상의 면 또는 선분 또는 입체의 위치 관계의 이해입니다.
공간 도형을 보게 되시면 어떻게 위치관계를 이해할것인가. (가령 평행 꼬인위치 수직 등등등) 에 대해 초점을 두시면서 학습하시면 될듯 합니다.
위치관계의 이해를 직관적으로 할려면 그림을 좀 많이 그려보시는걸 추천드리구요.... 논증적으로 할려면 좌표나 벡터의 도움을 받으시면 될듯 합니다.(가령 수직인 근거...)
하지만 절대 공간 도형은 직관 이나 논증 '만'으로 해결 되지는 않습니다... 직관으로 접근하고 논증적으로 뒷받침 해나가면 될듯 합니다.
벡터의 경우
많은 분이 벡터가 공간도형 좌표와 '만' 관련되있다고 생각하십니다만, 물론 공간도형의 해석에서 벡터가 이용되는것 뿐이구요,,,,
사실 벡터라는 내용 자체가, '복잡한 움직임을 쉽게 하기 위해 쪼개어서 생각하자' 라는 아이디어가 베이스입니다...
하지만 벡터라는 내용이 고등 수학에서는 대부분 기하적 해석 (최대 최소 / 벡터방정식등...) 으로 쓰이지요...
그러니 벡터를 보실때 단순히 보시기보다는 벡터를 분해하시는 쪽으로 계속 보시면서 벡터의 식이 무엇을 의미하는지...
의미적인 부분을 캐치하시는 연습이 중요하지 않을까 생각합니다...... ('내적했을때 최대'의 의미 / 식의 의미 등...)
올해 9월 평가원 29번 같은 경우도 벡터 식을 통해 벡터의 위치관계를 추론하는것이 핵심이었습니다.
작년 수능 최대 최소 문제도 식을 이해하되, 분해하여 생각한다는것이엇구요.....
사실 공간도형과 벡터는 상당 부분이 많이 부딛혀 보고 직관적인 부분을 기르는것이 살짝 중요하다 생각합니다.
공간이라는 내용 자체가 쉽게 다룰수 있는 부분이 아닌만큼 직관을 통해 풀면서 논증적으로 직관을 채워나가는것이 중요하다 생각해요^^
P.S. 어디까지 개인적인 생각일 뿐입니다. ㅋㅋ 참고만 해주세요^^