기하와벡터 정말 잘하는법...
게시글 주소: https://orbi.kr/0003212061
너무나도 간절합니다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해는 우주 컨셉인듯
-
오르비 눈 보면 감사원이 떠오르고 감사원을 보면 오르비가 연상되는
-
어디가 나을까
-
하루종일 했는데 29
1등좀...
-
작년 올해 둘 다 숙대 경희 외대 인논 응시했음 숙대는 작년이나 올해나 거의...
-
수능에사도 대학와서도 계산때문에 깎이는 점수가 너무큰데.. 차근차근풀어도 차근차근실수함
-
OK COMPUTER는 명반입니다
-
상상이상으로
-
순공 몇시간 정도가 적절할까요? 목표 등급은 모고 평균 2등급입니다.
-
ㅇㅈ 11
는 팔로워 천찍어서 기분좋아서 올려봄
-
들어보신분있나요... ..
-
기말고사 잘봐도 A0는 힘들겟죠 수학 거의다맞고 물리 한개틀리고 씨언어...
-
입결 어디에서 형성될 것 같음?
-
심찬우 잡도해 0
예비 고3 국어 3등급 뜨는 노벤데 잡도해 부터 할까요?
-
본인 99.0 99.5 99.9까지 찍어봄 최종으로는 중학교 전교 2등
-
누누 정글합니다 골드3이고 누누 27게임 승률74퍼 평점 6.26:1 찍혀요...
-
저 재수해요 삼수해요 사수해요.. 이러면 좀 에???!!??!! n수???!!!!!...
-
질문받아요 33
선넘질받도오케이
-
거래파토 존나내네
-
인강민철 0
정석민 독서 문학 커리 탈건데 아직 할게 없음 2025대비 인강민철 있는데 이거 걍...
-
나만 떨어지는 것이 아니라 어차피 떨어지면 다 같이 떨어지는 건데, 그만큼...
-
오래된 생각이다..
-
생윤 1타? 2
친구가 한다는데 누구인가요?
-
기존에 과탐만 허용한 메디컬(지금은 대부분)이 사탐도 허용으로 바꿀 거 같음?
-
??
-
ㄱㅁ 하나 인증 13
이틀 전에 릴스에 무심코 단 댓글이 좋아요 수가.. ㄷㄷㄷ 릴스는 비계로 가끔씩...
-
환산점수 내려가나요? 24랑 1컷 표점은비슷하다 하면 단순히 만표가 내려갔다고 해서...
-
ㄱㄱㄱㄱㄱㄱㄱㄱ
-
GTO / 디지몬 어드벤처 - 프론티어 우에키의 법칙 이거 안 본 애들하곤 얘기 안함
-
옯비 이즈 프리!!
-
만지금 15개정발점 스1다듣고 수2듣는데 만약 뉴런나왔을때 공통1번에서19번까지...
-
ㄹㅇ
-
서성한 자연과학계열 입학하려고 하는데 혹시 군대에서 1년 더 공부해서 동일대학...
-
수퍼소닉 히트쳤어도 들리는 소문으로 보면 그전까지 정산 못받고 국내 앨범 9만장밖에...
-
시대가 틀렸으면 좋겠다 제발
-
훈식t 개념테크만 1강 들어봤는데 ㄱㅊ은거같아서 풀커리 타려는데 훈식t 기출...
-
공군 군수 0
23수능 때 현역이었는데 그날 밤새고 시험 봐서 컨디션이 좀 안 좋았고 결과는...
-
미루고미루다 드디어 시계줄을 가죽으로 바꿨기때문입니다
-
에반게리온 4
백화점 구경하다가 마하그리드랑 콜라보한거 우연히 발견했네요 옷도 예쁜거 많더라구요
-
서성한에서 취업면에서 어디가 나을까요?
-
“이제 18세, 다시 시작하면 돼” 한강 투신하려는 고3 구한 시민 10
[길] 거북이 잡는 꿈 꾸다 깨 새벽 산책 동호대교 난간 매달린 사람 발견 수능...
-
고1 국어 모고7등급인데 풀어야할 문제집이나 인강(대성마이맥)추천해주실만한거 다들 있으신가요
-
최악의 경우 언매 123, 미적 134 로미오식 정상적 경우 언매 125, 미적...
-
솔직히 맘에안들긴 하는데 그냥 한번 던져봄 10만원 받고싶어요
-
공군가산점에쓸거라 1점만받고싶은데 기출문제집사서 박치기하면되나?
-
파스타
-
뀨뀨 6
뀨우
벡터는 크게 대수학적 활용과 논증 기하학을 벡터로 해석하는 것 두가지로 분류할 수 있습니다.
벡터의 대수적 활용은 보통 어렵지 않으니 패스하고
결국엔 기하에서 벡터를 적용하는 것이 관건이라 할 수 있죠. 공간도형과 이차곡선 역시 마찬가지로 대수적인 부분보단 논증기하에서 약하기 때문에 털리는 겁니다.
따라서 논증기하를 잘하면 기하와 벡터는 커버됩니다.
그니까 지금 당장 서점에 가서 에이급수학이라던가 고난도수학 따위의 교재를 사서 중등기하를 공부합니다. ㄱㄱ
중학교 개념에 충실히하란 말씀이신가요??.
중등기하 라는 건 아마 중고등학교 기하를 이야기하시는 게 아닐까요.. 그리고 실제로 중학교 2,3학년 때 나오는 기하 (요새도 다 배우지요?)를 적절히 잘해두고 응용할 줄 알면, 어려워보이는 고등학교 기하 문제라든가 수능 기하 문제들 중 상당수가 더 쉬워보일 거라는 생각이 듭니다.
기하와 벡터의 경우 단원이 일차변환, 이차곡선, 공간기하, 벡터 이렇게 4개의 과로 분류할 수 있는데요,
일차변환 이차곡선 같은 경우보다는 공간기하와 벡터에 대해 고민이 있으신듯합니다....
공간 기하의 경우
기본 평면 기하에 대한 이해가 충실하여야 공간에 대한 이해가 가능합니다.
일반적으로 공간 기하는 원, 삼각형 으로 나누거나 쪼개어 지게 되는데, 여기서 평면기하에 대한 성질들을 잘 아시면 좋습니다. (가령 5:12:13 의 비율이 나오면 직각 삼각형임을 안다거나....)
또한 공간기하는 묻는 대상물이 대부분 각이나 길이 면적 정사영등을 묻게 되는데
이러한 공간기하의 문제를 해결할수 있는 키포인트는
공간상의 면 또는 선분 또는 입체의 위치 관계의 이해입니다.
공간 도형을 보게 되시면 어떻게 위치관계를 이해할것인가. (가령 평행 꼬인위치 수직 등등등) 에 대해 초점을 두시면서 학습하시면 될듯 합니다.
위치관계의 이해를 직관적으로 할려면 그림을 좀 많이 그려보시는걸 추천드리구요.... 논증적으로 할려면 좌표나 벡터의 도움을 받으시면 될듯 합니다.(가령 수직인 근거...)
하지만 절대 공간 도형은 직관 이나 논증 '만'으로 해결 되지는 않습니다... 직관으로 접근하고 논증적으로 뒷받침 해나가면 될듯 합니다.
벡터의 경우
많은 분이 벡터가 공간도형 좌표와 '만' 관련되있다고 생각하십니다만, 물론 공간도형의 해석에서 벡터가 이용되는것 뿐이구요,,,,
사실 벡터라는 내용 자체가, '복잡한 움직임을 쉽게 하기 위해 쪼개어서 생각하자' 라는 아이디어가 베이스입니다...
하지만 벡터라는 내용이 고등 수학에서는 대부분 기하적 해석 (최대 최소 / 벡터방정식등...) 으로 쓰이지요...
그러니 벡터를 보실때 단순히 보시기보다는 벡터를 분해하시는 쪽으로 계속 보시면서 벡터의 식이 무엇을 의미하는지...
의미적인 부분을 캐치하시는 연습이 중요하지 않을까 생각합니다...... ('내적했을때 최대'의 의미 / 식의 의미 등...)
올해 9월 평가원 29번 같은 경우도 벡터 식을 통해 벡터의 위치관계를 추론하는것이 핵심이었습니다.
작년 수능 최대 최소 문제도 식을 이해하되, 분해하여 생각한다는것이엇구요.....
사실 공간도형과 벡터는 상당 부분이 많이 부딛혀 보고 직관적인 부분을 기르는것이 살짝 중요하다 생각합니다.
공간이라는 내용 자체가 쉽게 다룰수 있는 부분이 아닌만큼 직관을 통해 풀면서 논증적으로 직관을 채워나가는것이 중요하다 생각해요^^
P.S. 어디까지 개인적인 생각일 뿐입니다. ㅋㅋ 참고만 해주세요^^