수능에 절대 안 나올 문제(부제: 논술에도 나올 수 없음)
게시글 주소: https://orbi.kr/0003210160
정답률 0%에 도전해보죠. 수능에 안 나올거라고 적었지만 수능 끝나서 심심하시잖아요. 심심하시면 풀어봐요.
고등학교 과정만 써서 문제를 풀 수 있을..거에요 아마.. 제가 미리 풀어봤으니...
근데 syzy님은 풀지도..?
(이 문제는 봉사활동을 하기 위해 만들어졌습니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진리를 꿰뚫는다
-
곽준빈이나 기안84 보면 지상파 방송이 예전같진 않아도, 확실히 그 상징성 같은 것은 있지 않나요? 2
지상파에 고정으로 들어간다는 것 자체가 구독자 수와는 별개로 완전한 메인스트림으로...
-
흠..
-
나랑 마주칠때마다 ㅈㄴ웃음 곧 자살할 예정
-
꺼라
-
팩트는 인간이랑 공룡은 서로 만난적이 없음
-
아빠가 사주라 하고서 데리고 갔는데 아무것도 말 안해도 다 맞힘 게다가 재밌음 +...
-
우리집 누렁이도 아는데..
-
흠..
-
ㅇㅇ
-
겁나 하기 싫다 진짜
-
[공부] 노베를 응원하며 (부제: 이 패턴만 바꿔도 노베는 면합니다) 8
안녕하세요. 영포자 지도 전문 영어 강사 Good day Commander입니다....
-
그거 문학 교과서에 있음 내가 읽어보길 권하는 고전 수필들 - 일야구도하기(박지원)...
-
ㅊㅊ
-
흡연구역 가면 나도 냄새 떄문에 힘듦. 근데 아무대서나 피면 안되니 가야함
-
기출에 꽤 많던데 안나오는거 오히려? 좋아
-
재수생인데 이러는 게 ㄹㅇ... 다들 그냥 하는 건가요 스카독재라 너무 외롭고 별...
-
이오니아 핑크 4
어때염? 냄새 안 나나요
-
삘이 그럼
-
밥 기다리는 줄에서 어떤 사람 펨코 보더라
-
좋아요정 누구지 2
글마다 한개씩 누르는거 기요미인데
-
https://orbi.kr/00072744760 칼럼대회 많관부
-
술 마시고 싶다 0
-
저녁해장 2
-
우산 쓴 시간 3분도 안될듯
-
아무래도 일배나 그런 사이트 하는 친구겠지요? ㅜㅜ 이래서 함부러 정치성향 드러내는거 아닌가바용
-
갈테 경기부엉이부터 옮생을 함께 했던 나로선 가슴이 미어진다.다음 옮생엔 내 비서로...
-
범위가 120페이진데 인강도 없고 ㅠ
-
이신혁T 시즌1 0
OZ 개념 기출 끝내고 아직 개념이 부실한 느낌이 들어서 이신혁T 시즌1 VOD...
-
박나래 ‘55억 단독주택’에 도둑 들었다… 수천만원 금품 도난 1
방송인 박나래가 집에 도둑이 들어 수천만원 상당의 금품을 도난당했다. 8일 박나래...
-
난 무료임❤️
-
당연함 기숙학원임 씨발 세상에서 도태되고 있다는 게 한번에 느껴지네
-
[정책 인사이트] 서울서 비둘기 먹이 주면 ‘과태료 100만원’… 실효성은 ‘글쎄’ 4
비둘기, 먹이 풍부한 도심에서 야생 상태보다 더 많이 번식 먹이 제한해 개체 수...
-
심찬우 0
평소 강의에서 추천하는 책 제목들 알려주실분
-
[단독] 경찰, '중국 간첩 99명 체포 보도' 스카이데일리 압수수색 3
(서울=뉴스1) 박혜연 기자 = '12·3 비상계엄 당시 계엄군이 선거연수원에서...
-
SNS의 힘은 대단해
-
경외감이 드네 나도 더 공부해야겠다
-
씨1발 원형탈모왔다 16
내 춘추 17세다
-
최소한 EBS에 올라오는 공짜 해설지보단 유용한 정보를 제공해줘야 하는게 아닌가?
-
방탄이랑 만나네
-
안녕하살법~ 1
치카 넨도돌 귀여움
-
내일부터 휴가다 3
-
나니 가습기~?
-
현금이 최고야 0
근데 무슨 현금이요?
-
후가휴다휴다휴가가가가가각 휴가 갈래..
inx를 X로 치환합니다 찍고 갑니다
전 이 문제 풀 때 치환한 적이 없어서...ㅠ
ㅎㅎ 그런가요 괄호가 -1로 묶여있어서 왠지 치환해야 할것 같아서
-1은 역수표시에요
제 이름이 나왔으니 풀어야겠네요..ㅎ 직관적으로는 x가 무한대로 가면 거의 x/2ln x -2x/(ln x)^2 = (x ln x -4x) 2(ln x)^2 이니까 무한대로 발산해서 그런거 아닐까요. x무한대로가면 마지막식 분자는 x보다 크고 분모는 로그니까 상대가 안되서.. 혹은 그냥 해도 되지만 ln x = t 라 치환해서 정리하면
(e^t / (1+2t) - 2e^t / (1+t^2) )^-1 = (1+2t)(1+t^2)e^-t / (t^2 -4t-1) < 8t e^-t 이므로 됩니다. (단 t충분히 클 때 (1+2t)(1+t^2)<4t^3, t^2 -4t-1 > t^2 /2 이므로)
제 풀이보다는 훨씬 간략하네요! 마지막 식에 절댓값을 씌워서 샌드위치 정리를 쓰면 원하는 결론이 나오겠죠? 하지만 t/e^t의 극한값의 경우 0이라는 건 짐작할 수 있지만 직접 풀어본 학생들은 별로 없으리라 생각해요. 그래서 저는 x와 루트x를 이용해서 풀었는데 풀이는 따로 올릴게요~
t/e^t의 극한값이 0이라는 걸 직접 풀어본 학생들은 별로 없을 거라는 건 무슨 의미인가요?
e^t가 t보다 훨씬 빨리 증가하기 때문에 극한값이 0이라고 바로 생각할 수 있지만 실제로 풀이 과정을 서술할 수 있는 학생이 적다는 뜻이었습니다. ...아닌가요;;
이렇게 재밌는 문제도 올려주시고 고맙습니다ㅎ t/e^t 극한값 0인 것은, (로피탈 정리를 안 쓰더라도) t양수일 때 e^t > 1+t+ t^2 /2 을 증명해서 보이거나 ( f(t) = e^t -1-t -t^2 /2 라도 두시고, f ' , f '' 계산해서 t>0일 때 f(t)>0이다 보일 수 있으니까요), g(t) =e^t - t^2 라는 함수 둔 후에 t -> 무한대 이면 이 함수가 발산한다..(혹은 양수이다) 를 (역시 미분 이용해서) 보이면 될 것 같아요~ 또 가끔 봉사활동 해주시면 좋고요^^
못풀겟음.. 나삼순가..
- 비방죄 (Horus Code 제5조 7항)
정답률 0에 도전한다고 했지 정답률 0이라고는 안했고요, 논술에조차 나올 수 없다고 적은건 경향에 전혀 안맞기 때문이지 어려워서가 아닙니다. 제가 잘난척하려고 이글 쓴 줄 아세요?
딱봐도 잘난척하는거 보여요..ㄷㄷ
처ㅛ댓글에 치환으로 한다는 댓글 들어보지도 않고
본인이 푼방식은 그게아니라는건 전혀 논리적이지않음
걍 잘난척하랴고 올린거 ㅇㅇ
제가 언제 그 방식이 틀렸다고 했나요? 제가 푼 방법과 다르다고 한거죠. 그리고 자꾸 잘난척 하는걸로 몰아가지 마시죠.
몰아가기 참 잘하시네요.
이렇게 글의 의도를 왜곡해놓으시니 뭐라 말해야 할지 모르겠습니다.
홀든님, 글쓴이 엔공간님은 그냥 재미로 풀어보자고 그랬지,
불특정다수에게 "나 쩔지 쩔지 ㅋㅋㅋ " 라고 하신 게 아니라고 언급을 하셨습니다.
그리고 본문에 봉사활동 에 쓰려고 만든거라고 애초에 언급을 하셨잖아요.
홀든님에게서 편협성이 보이시네요.
글을 당신 머릿속에서 재구성 하시지 마시고 '있는 그대로'를 보세요.
내가 풀 수 있다, 정답률 0%다
흠?
문과라 이 문제가 얼마나 어려운지는 모르겠지만, 시간 넉넉히 잡고 여유있게 풀면 풀 수 있는 문제도 수능시험장에선 안풀어질수도 있는거 아니에요?
물론 그렇겠죠? 근데 전 '정답률이 0이다'라고 말한 적은 없었는데.. 그리고 저 문제는 당연히 시간 넉넉히 잡고 여유있게 풀면 풀 수 있는 문제고 어떤 분께서는 잠깐사이에 풀어내셨으니...
- 비방죄 (Horus Code 제5조 7항)
방금 전에 님이 "작성자가 '이 문제가 정답률 0%다'"라고 했잖아요? 말바꾸지 마세요. 그리고 '이거 이후로 댓글안담'이라는 말, 귀막는 거 맞죠? '내가 맞고 너가 틀리다'는 태도, 그렇게 겸손하다고 할 수 없을텐데요.
결국 말꼬리잡기였던 거군요.
님 말대로라면 학교 내신 객관식 시험에서 나오는 문제들은 선생님이 이미 푸셨으니 0%가 나올 수 없겠군요?
오르비 유저에 비하면 N공간님은 선생님이라는 의미인가요?
그걸 또 그렇게 해석하시는군요. 할 말이 없습니다.
오늘 신고했습니다. Horus Code 읽어보시면 알겠지만 Holden님의 행동이 인신공격죄, 비방죄, 모욕죄 중 하나에 해당한다는 사실은 부정할 수 없을 것입니다.
다들 너무 삑딱하게 바라보시는둣...? 설령 그렇게 느끼셧더라도 그냥 넘어가셔도 되실일 같은데.. 굳이 서로기분나쁠필요는없잖아요 ...
별것도 아닌거로 왜이렇게 트집을...;
lnx / x 가 무한대로 가면 0이된다.
이거만 알면 되지 않나요?? 잘못풀었나..?
극한풀이 기본 - 식간단화
분모통일. -1이므로
분자분모 위치 바꿔줌.
극한풀이 기본은 식을 변형해서 수렴부분을 도출해내고 수렴부분을 빼내버리는 식의 풀이이므로
좌변과 우변에 (lnx )^2나눠줌.
그러면 살펴보면 x와 lnx가 남게됨.
그래서 이 두개 극한이 어떻게 변하냐가 핵심 < 이라고 봤어요
루트엑스 빼기 엘엔엑스는 fx
f(4) > 0 (e>2임을 이용).
x>4에서 f'(x)는 양수.
그러므로 x>4에서 f(x)>0
고로
x>4에서 루트x>lnx
루트x /x > lnx/x > 0 성립 (단, x>4)
맨왼쪽 식 극한 0
그러므로 lnx/x도 극한 0
풀이발상근거 :
알고 있는건 다항함수 혹은 n차함수끼리 극한이므로 lnx보다 크지만 지수가 1보다 작은 x도출
=> 루트x 탄생!
이정도면 논술에 나올 수 있지 않나요?
문과라서 내용은 잘 모르겠지만 걍 아무의도없이 문제 투척한 거같은데...과민반응이 왤케 많지? 싸울일이 전혀 아닌데 ㅋㅋㅋㅋㅋ