미분 투척 (6,9 중요문제 개념 반영)
게시글 주소: https://orbi.kr/0003155294
제가 스캔이나 따로 어디다 글 적고 그러는 방법을 몰라서요... 여기다 문제 적을게요 ㅠㅠ 학교에서 심심할 때 만든거라.. 따로 종이에 적고 푸시길..
최고차항의 계수가 1이고 역함수가 존재하는 삼차함수 f(x)가 있다. f(x)의 역함수를 g(x)라고 할 때,
h(x) = f(x) (x<-1)
= g(x) (x>=-1) 가 모든 실수에서 미분 가능하며, 임의의 실수 a, b (a<b)에 대해 -2 인테그랄(a~b) h(x) dx < (a-b)*{h(a)+h(b)} 을 만족한다고 할 때, f(2)의 값은?
정답은 드래그!! 29
반응 괜찮으면 한개 더 올릴게요..
댓글에 해설 달아놨으니 스크롤 조심하세요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 밤샐각인데 에어컨없음
-
마구 챱스틱으로 때리기
-
미래의 내가 공부할거야
-
아니꼽다 1
같잖다
-
집을 못가 ~ 3
아침부터 시험이거든 ~
-
... 펴야겠지?
-
폐급 인생 1
자야하는데 아아못 자고 놀고있으므,,,,
-
아 ㅈ됐다 진짜 2
내일 1교시 시험인데 1회독도 안했네
-
저도 열등감이 엄청 심한 편이었는데 저런 생각을 어느 정도 받아들이니까 좀 그러려니...
-
잔인한거임 동시에 열심히 살아야 하는 동기
-
이걸무료로푸네ㄷㄷ
-
물론 아이언맨에게 무한한 감사를 하지만 세상에 나빼고 모든 남지를 지웠으면 내가...
-
내 경쟁상대 3
어제의 나임
-
하기시작하면 밑바닥을 보게됨 보고싶지않음 더이상
-
근데 그 관리를 안해서 그렇지 제발 운동하고 + 메이크업하고 + 패션만 깔끔하게...
-
사문을 조져보자
-
어차피 내 인생 주인공은 나니까
-
시험 7시간도 안남앗는데 1회독도 못한 나랑 수능 공부하는데 아직도 안지는 애들이라는거임...
-
하나가 개 심각해짐
-
인생이 열등감임 0
그냥 어렸을 때부터. 초딩 중딩 고딩 지금도 열등감 덩어리임. 열등감 든 것들만...
-
당장 자기관리를 시작해야함 ☠️
-
요즘 느끼는건데 세상엔 생각보다 인생을 돌아가는사람이 많음 당연히 하고싶은게...
-
10등까진 감
-
나도 열등감 7
지금 등에 열 나서 땀이 존나 나서 잠이 안오는데 해결법좀
-
고딩때 공부 못하던 친구 내가 존나 학원 같이가자고 꼬드겨서 학군지 학원가...
-
변한건 너야 변한 널 대하는 내 태도가 바뀐거야
-
뭔가 계속 그래야할거같다고 느낌 일을 빡세게 두개하라는게 아니라 인스타나 블로그나...
-
그걸 참고 들어줬으면 좋겠어
-
잠을 자야해요 8
좋은 밤 되세요오..
-
문학청년 있음? 4
소설책 추천 좀 해주
-
8시간이 딱 졸라 개운함
-
능지가 2
중하능지정도 되는듯 시바
-
생활패턴 ㅁㅌㅊ 15
2-3시취침 6시기상 1일 양치3회 샤워2회 화장매일아침함
-
사실 시험만 아니면 하루는 째도 되긴 하는데
-
남들 다 안 하는 걸 내가 먼저 하기 시작했다면 나는 선두자라고 마냥 내세울 게...
-
재밋을듯
-
잠좀깻다 0
첫시험 다뒤졋다 ㅋㅋ
-
씻긴씻는데 깨끗히 안씻더라
-
허걱슨 ㄷㄷ 비누냄새난다고 F맞겠네
-
느와르물 틀딱 애니들 다 수작 이상인데 아무튼 ㅈ세계물이 문제임 최신 애니 진짜 볼게 없어
-
의지박약이라 일어나자마자 씻어야되는데 쉽지 않네..
-
토토 간접체험한듯.. 확 빠져듬 좀만 더하면 될것 같아서 계속 박음..
-
노베 도형 강의였었나 비율 딱딱 맞는거에 희열느끼셨는지 흐흫하면서 설명해주시는데...
-
막 학교에서 등급말고 몇점이상 넘기명 A,B,C 이런 식으로 나오는 거...
-
여친이 편지 보내줬는데 뭔말인지 모르겠어서 해석좀 해주세요...
-
딴거 할 거 많긴 한데 6모전에 수특 공부 해야할까요 아니면 걍 딴과목 할까요별개로...
-
카약카약카약! 카약카약사탐날먹카약카약카약카약!!
-
안녕? 2
반가워
-
한국 현대소설 중에 예전 고향의 친구에게 전화가 와서 한 번 놀러가기로 했지만 막상...
-
상대적으로 차이가 나면 자격지심을 느낄 수도 있지 않을까요?
수리나형용인가요? 그리고 해설은....올려주실수있나요
아.. 그걸 안썼네요 죄송.. 가형에서 배운 내용을 의도한건데.. 나형은 아마 못 풀듯? ㅠㅠ 그래도 해설 원하시면 여기다 적어드릴게요..
아.. 전 나형 초보자여서 ㅋ 계속 생각해봐도 모르겟던데 나형은 못푸는문제였군여.. 위안삼아 포기하겟습니다 ㅋㅋ
넵..ㅋㅋ 열공하세요
그래도 해설은 달아주시면 감사합니다....20분넘게 쳐다보고있었거든요 ㅋ
댓글 밑에 새로 올릴게요.
변곡점이 들어가는 개념이고 글로만 적은거라 이해하기 힘드실 지도.. 죄송요 ㅠㅠㅠㅠ
f(x)가 (x+1)^3 - 1 아닌가요? 헷갈리네 ㅠㅜ
아니에요.. ㅋㅋㅋ 첫번째 조건에도 맞지 않는 듯
아아 ㅋㅋ ㅈㅅㅈㅅ ㅋ
===== 해설 =====
일단 두번째 적분식은 h(x)가 위로볼록이라는 조건이구요.. (사다리꼴 이용한 식 표현)
h(x)의 미분 가능 조건으로 f(-1)=g(-1)=-1이고, f'(-1)=g'(-1)=1/f'(-1)이므로 f'(-1)=1이란 것을 알 수 있습니다 (f(x)는 역함수가 존재하고 최고차항 계수가 1이므로 f'(x)=-1은 나올 수 없음 즉, f(x)는 전구간 증가함수)
여기서 평면좌표에 y=x그래프를 그리고 f(x)를 (-1,-1)에서 y=x와 접하는 그래프를 여러 개형으로 그릴 수 있습니다. 그 예로, (-1,-1)에서 y=x와 접하고 다시 x>-1에서 y=x와 만나는 경우, x<-1에서 y=x와 만나고 (-1,-1)에서 y=x와 접하는 경우, (-1,-1)이 변곡점이 되어서 f(x)가 y=x에 의해 (-1,-1)에서 뚫리는 경우 (다른 점에서 다시 안만나는 경우)를 생각해볼 수 있는데 첫번째와 두번째 개형은 무조건 f(x)든, g(x)든, x>-1또는 x<-1에서 변곡점이 생기게 됩니다. (f(x)는 삼차함수이므로 (-1,-1)에서 변곡점이 아니라면 무조건 다른 곳에서 변곡점이 있겠죠?) 삼차함수이므로 x=-1이 아닌 곳에서 변곡점이 생기게 되면 그 전,후로 무조건 위로볼록,아래로볼록이 바뀌게 됩니다. 따라서 두번째 조건을 만족하지 못하므로, 그래프의 개형은 무조건 세번째 그래프밖에 나올 수 없으므로 f''(-1)=0이고, f(x)와 (-1,-1)에서의 접선의 방정식을 연립하게 되면 삼중근이 나오게 된다는 것을 이용하여 식을 세우면 f(x)-x=(x+1)^3이 나오므로 f(2)=29가 됩니다.. (f(x)=x^3+ax^2+bx+c 로 두고 f(-1)=-1, f'(-1)=1, f''(-1)=0의 식 3개를 이용하여 a,b,c를 구하는 풀이도 가능합니다)
오 좋은 풀이입니다 ㅋ 처음에 잘못생각해서 ㅋㅋ
감사합니다..ㅋㅋ 열공하세요
아 참고로 f(x)뿐만 아니라 g(x)도 무조건 변곡점이 존재하게 됩니다.. 그냥 삼차함수를 대칭시킨 것 뿐이니까..
위로볼록인 함수는 역함수 취하면 무조건 아래로 볼록한가요~~? 도함수, 이계도함수 다 존재하고.,.
다른 함수는 잘 모르겠는데.. 삼차함수는 직관적으로 알 수 있지 않나요 ㅋㅋ