-
이시간에
-
불면증.. 4
원하는 기상시간보다 45분이나 일찍일어나버렸다
-
잘까 4
흠
-
안자면 큰일날듯 1
옯붕이들 ㅂㅂ
-
2차 얼버잠 2
이젠 진짜 ㅃㅃ
-
동서연고. 1
무요.. 왜요.. 혼잣말이에요..
-
후…. 던져버리고 싶네ㄹㅇ
-
너무졸린데..
-
다시 했을 때 메디컬 가능성 얼마나 보시나요?
-
잘때가된건가 5
슬슬
-
발 300 10
손도 많이 큼
-
꾸준히 햇으면 꽤나 올렷을거 같은데 오랜만에 하려니 계속 같은 곳에서...
-
ㅅ..ㅂ 요즘에도 한달에 한번은 뛰다가 무조건 삐는 것 같다
-
키작은 사람이 6
큰 사람보단 끌림
-
마스터 등반 시작
-
응..
-
재밋는건같이해요
-
귀가 ㅇㅈ 2
사실 아까 퇴근하면서 찍었어요
-
키작으면 좋은점 4
애들이 귀엽다고함 헤헤
-
ㅋㅋ 난 작년에 2
공부하는거에도 기출이 잇엇음.한국 기출만 봤을 때2008년도부터 2023년도 기출된...
-
새르비 화력 테스트 18
유동인구 10명 넘을까?
-
팩트는 0
마이 베스또 프렌드들은 몇시간째 디코를 하며 롤을 하고 잇다는거임.지금도 디코에...
-
굿모닝 1
ㄱㅁㄴ
-
에휴이
-
오르비 굿밤 2
전 자러감
-
서버 어머같네요 0
ㅎㅎ
-
맞팔 구합니다 3
현역학생입니다 물리러에요
-
오르비언중에 맘에안드는사람있으면 잘 안오게된다
-
ㅇㅂㄱ 1
수업가야겠군
-
연구원인데 떼잉,,삼각함수랑 수열을 훨 잘함 지로함에 비하면
-
ㅇㅈ 13
새벽이니까 다행일듯 내 손임 펑~~
-
학벌딸 치고 싶어서 인거 같음 그냥 병신 한남 자존감 밑바닥 루저새끼라 뭐라도 하나...
-
안 맞게 공부를 하고 잇음 ㅋㅋ,,내 공부 이론대로 하는 공부가 좀 상당히 피곤함....
-
내 차단리스트 1
없음뇨
-
응.. 부러워..
-
침대에서 자면서 망상함
-
지로함 6
평가원에선 잘 모르겟는데 (어렵게 안 내서), N제같은거 보면 되게 재밋는 문제...
-
무슨 이미 의대 붙은 것마냥 의대 성적 되면 의대를 갈까 설대를 갈까? 의대 가면...
-
수강 신청 0
막 20학점씩 신청 해놓고 나중에 빼는 방법 좋나요? 예상대로 안될 때가 많으니...
-
기출 좋앗던거 3
241122 (개 잘 만든문제)121130 (함수의 증가속도, 아주 중요한 관점)...
-
국회증언법이랑 양곡법 이런거 비판하는 내용있으면 너무 그렇지??..
-
롤의정리 4
롤은 재밌다
-
공군 질받 9
암거나 ㄱㄱ
-
잘자용 16
배가 고파져서 블아 ost 158번 그레고리오 피아노 버전을 들으면서 이만 자야겠오요
-
성대바꿔
-
롤할사람 4
모집ㅂ중
재밌는 문제군요. 답은 p=-2, q=-1 이니까, 17. 함수 그려놓고 t점 이동시켜보면서 생각하면 되는데 경우가 몇 가지 나오네요.
적절히 평팽이동해서 변곡점이 원점이라고 가정해도 상관없으니(나중에 다시 옮기면 되니까요) f(x)=x^3 -ax라고 둘게요. f '= 3x^2 -a.
이 문제는 한 마디로 접선에 대해 대칭이동한 곡선의 순간기울기가 무한대가 되는 경우가 발생하지 않을 조건을 찾는 문제군요.
x=t점에서 기울기 m=3t^2 -a. 이 접선이 y=f(x)와 만나는 다른 점 하나는 x좌표가 x=-2t (근과 계수와의 관계) y축의 음의 방향으로부터 시계방향으로 접선이 이루는 각을 세타 라 할게요. 그러면 m= cot theta
이 접선에 대해 y축을 대칭이동하면 기울기 cot 2theta인 직선이 나옴.
cot 2theta 라는 기울기가 {3x^2 -a | x<=-2t} 에 속하면, 대칭 가능이 아님.
cot 2theta = 1-tan^2 theta / 2tan theta = (m^2 -1) /2m
(1) a<=0 인 경우: 함수는 단조증가.
t<=0이라면 cot 2theta < -a 이어야 하고,
t>0이라면 cot 2theta < 12t^2 -a 이어야 함.
(2) 0=root(7/9) 인 경우.
시간이 없어서 나중에 다시 글 달게요.ㅕ
문제 칭찬해 주셔서 감사합니다ㅎㅎㅎ
누군가 빨리 풀어서 답글을 달아주기를 바라고 있었어요ㅎㅎㅎ 답은 맞고요ㅎㅎ
아..ㅎㅎ 접선에 대해 대칭이동 하는 문제는 있었어도, 이렇게 대칭이동한 곡선이 여전히 함수가 될 것을 요구하는 문제는 못 봤던 것 같은데, 직접 내신 거라면 참 창의적이시라고 생각합니다. 이 정도면 서울대 13학번 충분히 되실 듯..ㅎㅎ 답 쓰다가 나갔는데, 지금은 글 수정이 안 되는군요ㅋㅋ
좌우지간, 이 문제 답만 맞추려면 더 간단한 풀이가 가능하겠지만, 모든 경우를 포괄하는 (위에서 a값에 상관없이) 결론을 도출하기 위해, 좀 계산을 해볼게요.
y축의 기울기가 무한대이고, y축을 접선에 대해 대칭이동한 직선과 동일한 기울기(cot 2theta)를, 접선 아래쪽 영역의 곡선 중 어느 지점에선가 기울기로 가져버리면, 대칭 이동한 곡선의 기울기가 무한대가 되는 점을 갖게 될테니 대칭 후 곡선이 함수가 안 되겠지요. (y=x^(1/3)처럼 운 좋으면 함수가 되는 경우가 있으나 이 문제에서는 조금 생각해보면 그런 경우는 없지요.)
그리고 아래 풀이에서 m=0인 경우는 따로 처리해야 하는데 (분모가 0이 되는 경우가 있어서) 쉬우니까 그냥 생략하겠습니다.
(1) a<=0 인 경우: 함수는 단조증가. (기울기m 항상 0이상)
t<=0이라면 cot 2theta < -a 이어야 함. (m^2 -1)/2m <-a --> (m+a)^2 < a^2 +1 --> 9t^4 < a^2 +1 --> -((a^2 +1)/9 )^(1/4) 0이라면 cot 2theta < 12t^2 -a 이어야 함. (m^2 -1)/2m <12t^2 -a --> -1 < (3t^2 -a)(21t^2 -a) 우변 양수이므로 자명.
종합하면, -((a^2 +1)/9 )^(1/4) root(7/9) 인 경우.
(2),(3) 모두 0 -((a^2 +1)/9 )^(1/4) 0이라면 cot 2theta < 12t^2 -a 이어야 함. (m^2 -1)/2m <12t^2 -a
다시 m=3t^2 -a 의 부호에 따라 경우를 나눠서 풀어보다보면
m>=0일 때 a<=루트(7/9)이면 항상 만족. 즉, t>=루트(a/3)
m>=0일 때 a>루트(7/9)이면 t^2 >(12a+루트(81a^2 -63)) / 63. 그런데 t>=루트(a/3)와 교집합 구하면, 그냥 t>=루트(a/3) 으로 동일.
m<0일 때 a<=루트(7/9)이면 항상 만족 못 함.
m<0일 때 a>루트(7/9)이면 (12a-루트(81a^2 -63)) / 63 < t^2 <(12a+루트(81a^2 -63)) / 63
종합하면,
(2) 0root(7/9) 인 경우: -((a^2 +1)/9 )^(1/4) =루트(a/3)
여기서 루트(a/3) 들어가는 부등호들은 계산 안 해도 직관적으로 자명한 것들임.
직관적으로 보면 별 이야기 아닌데 (물론 계산하지 않으면 정확한 값은 알기 힘드나..) 풀이를 엄밀하게 쓰려니 길어졌군요..
(1),(3) 경우는 답으로 나온 t의 구간 형태 자체가 문제에 주어진 것과 다르므로, (2)경우여야 함.
-((a^2 +1)/9 )^(1/4) a= 3/4이고, 원함수는 f(x)= x^3 - (3/4)x 를 x축 방향으로 -2만큼 평행이동한 것(y축 방향으로는 아무렇게나 이동해도 무방)
-((a^2 +1)/9 )^(1/4) - 2 = -2 - 루트(15)/6. 따라서 p=-2, q=-1. 4p^2 +q^2 = 17. 문제에서 a라는 상수 사용했는데 문제 풀이에서 혼동되게 중복사용해서 죄송합니다^^ (3)번 경우를 문제로 내면 상당히 복잡해지겠군요.
제가 직접낸 문제 맞고요 저는 서울대 수교과가 목표입니다
2002년도인가 그때 평가원 모의 아니면 수능에서 45도 회전시켰을 때
함수가 가능한지 물어서 그 문제에서 아이디어를 조금 따왔어요