-
이쯤에서 한번 쉴 때도 됐죠
-
차피 기출은 다시 볼꺼니깐..
-
컴팩트하면서 먼가 유베이스들이 놓칠만한 내용만 집어주는사문 개념(?) 강좌가...
-
복학이로다 0
복학이구나 6개월 동안 어쩌지
-
내 노후를 책임져줘
-
요망한 지2련
-
영어는 계속 3등급만 나오고 이번에 수능 제대로 공부해보려고 합니다. 1. 보통...
-
매국노 등장 1
오늘도 외화 유출 중
-
하루에 6시간 수업이지만 힘내자..
-
으ㅇㅓㅊㅡㅟ한닥 3
홈런볼에 취한다 왤케 맛남
-
인터넷에서도 그렇고 현실에서도 그렇고 세상을 바라보는 관점, 가치관 자체가 정반대...
-
보통 학종에서 8
생기부와 직접적인 연관이 없어도 붙을수도 있나요...? 예를들면 컴공 생기부인데...
-
아니,,, 장난하지말고,,, 레어진짜 남한테서 뺐는거임??? 8
레어 관련글썼는데 하나같이 다들 합동해서 장난치는거같넼ㅋㅋㅋㄷㅋ 막 뺐는거 아니죠??? 그죠???
-
이거 ㄹㅇ임
-
수치스럽다 5
1년전만해도 수학 질문에 답을 달아주고 있던게 난 그럴자격이 전혀 없었어
-
야메추좀
-
이런 개백수라이프를 언제까지 살까나
-
ㄱㄱ
-
수학 등급 올리려면 어떻게 해야하나요 확통이에요 3~4인데 수능 1등급 받고싶어요
-
크하하
-
강대 스투 자리 2
강대 스투 들어갈 예정인데 혹시 강의실 좌석은 선착순인가요 아니면 다른 방법으로 정하나요?
-
얼마전에 봤던 릴스 다시 보고싶은데 도저히 못찾겠다ㅠㅠ
-
돈 때문에 진로 선택하는 사람들 있는데 그러면 그냥 의대 가면 됨. 통계 자료를...
-
젭알
-
개념 인강만 듣고 마더텅 풀면 되는건가요?
-
재수 중앙대였는데 너무 학벌 컴플렉스 심해서 연고대 소리만 들어도 움츠러들고 그랬음...
-
투과목은 4등급나오는것도 힘들다고 리스크가 너무 크다고 원원으로가자하고 여기선 원원...
-
설광역가려몀 1
수능대략 백분위 기준으로 어느정도가 최초합권~추합권인가요 ㅜㅜ
-
이전 조회수가 뻥튀기였던거 아닌가하는 생각이 드는...ㅋㅋㅋ 그냥 이상하네요
-
계속배고파
-
수학2목표면 현우진 과한가요? 메가에 추천샘있나요? 3
수학2목표면 현우진 과한가요? 메가에 추천샘있나요? 다른과목 할 시간때문에요
-
메인뭐다뇨 ㅋㅋㅋㅋㅋ 15
헐
-
재업이 붙은 이유 : 전에 올린 비슷한 내용의 만화에서 욕설이 적나라하게 들어가있는...
-
현우진 뉴런 필기해야할거 많나요? 필기하는거 싫어해서요
-
근데 뭐요 님 저 아시나요? 저 ”재수생“인데요 ? 남 도울 여유 업ㅎ어요
-
저녁여캐투척 8
명란젓키타
-
한권으로 크게주면 안되나 모든선생마다 매주몇권씩주니 개좆같네ㅅㅂ 내가 존나예민한건가
-
어떤가요?
-
똑같은회사가면 후자가 더 메릿이있나
-
건동홍 컬렉터 3
건동홍 다 모았네 하지만 중대로간다
-
으흐흐
-
터미널 챌린지 6
연습했는데 힘드네
-
오피셜 0
https://youtu.be/VEVqay5q0Io?si=rBhI7P4xm_O1RRR-
-
하
-
할말하않.. 12
-
3개 성공적으로 수집 완료
-
23 6모 국어 언매 선택하고 풀어봤는데 언매 언어에서 4개 틀려서 9점 까이고...
-
당시 수특에 잇엇는데 절대 안나올 지문으로 뽑히다가 나와서 뒤통수 후려갈긴걸로...
-
세월이여...
재밌는 문제군요. 답은 p=-2, q=-1 이니까, 17. 함수 그려놓고 t점 이동시켜보면서 생각하면 되는데 경우가 몇 가지 나오네요.
적절히 평팽이동해서 변곡점이 원점이라고 가정해도 상관없으니(나중에 다시 옮기면 되니까요) f(x)=x^3 -ax라고 둘게요. f '= 3x^2 -a.
이 문제는 한 마디로 접선에 대해 대칭이동한 곡선의 순간기울기가 무한대가 되는 경우가 발생하지 않을 조건을 찾는 문제군요.
x=t점에서 기울기 m=3t^2 -a. 이 접선이 y=f(x)와 만나는 다른 점 하나는 x좌표가 x=-2t (근과 계수와의 관계) y축의 음의 방향으로부터 시계방향으로 접선이 이루는 각을 세타 라 할게요. 그러면 m= cot theta
이 접선에 대해 y축을 대칭이동하면 기울기 cot 2theta인 직선이 나옴.
cot 2theta 라는 기울기가 {3x^2 -a | x<=-2t} 에 속하면, 대칭 가능이 아님.
cot 2theta = 1-tan^2 theta / 2tan theta = (m^2 -1) /2m
(1) a<=0 인 경우: 함수는 단조증가.
t<=0이라면 cot 2theta < -a 이어야 하고,
t>0이라면 cot 2theta < 12t^2 -a 이어야 함.
(2) 0=root(7/9) 인 경우.
시간이 없어서 나중에 다시 글 달게요.ㅕ
문제 칭찬해 주셔서 감사합니다ㅎㅎㅎ
누군가 빨리 풀어서 답글을 달아주기를 바라고 있었어요ㅎㅎㅎ 답은 맞고요ㅎㅎ
아..ㅎㅎ 접선에 대해 대칭이동 하는 문제는 있었어도, 이렇게 대칭이동한 곡선이 여전히 함수가 될 것을 요구하는 문제는 못 봤던 것 같은데, 직접 내신 거라면 참 창의적이시라고 생각합니다. 이 정도면 서울대 13학번 충분히 되실 듯..ㅎㅎ 답 쓰다가 나갔는데, 지금은 글 수정이 안 되는군요ㅋㅋ
좌우지간, 이 문제 답만 맞추려면 더 간단한 풀이가 가능하겠지만, 모든 경우를 포괄하는 (위에서 a값에 상관없이) 결론을 도출하기 위해, 좀 계산을 해볼게요.
y축의 기울기가 무한대이고, y축을 접선에 대해 대칭이동한 직선과 동일한 기울기(cot 2theta)를, 접선 아래쪽 영역의 곡선 중 어느 지점에선가 기울기로 가져버리면, 대칭 이동한 곡선의 기울기가 무한대가 되는 점을 갖게 될테니 대칭 후 곡선이 함수가 안 되겠지요. (y=x^(1/3)처럼 운 좋으면 함수가 되는 경우가 있으나 이 문제에서는 조금 생각해보면 그런 경우는 없지요.)
그리고 아래 풀이에서 m=0인 경우는 따로 처리해야 하는데 (분모가 0이 되는 경우가 있어서) 쉬우니까 그냥 생략하겠습니다.
(1) a<=0 인 경우: 함수는 단조증가. (기울기m 항상 0이상)
t<=0이라면 cot 2theta < -a 이어야 함. (m^2 -1)/2m <-a --> (m+a)^2 < a^2 +1 --> 9t^4 < a^2 +1 --> -((a^2 +1)/9 )^(1/4) 0이라면 cot 2theta < 12t^2 -a 이어야 함. (m^2 -1)/2m <12t^2 -a --> -1 < (3t^2 -a)(21t^2 -a) 우변 양수이므로 자명.
종합하면, -((a^2 +1)/9 )^(1/4) root(7/9) 인 경우.
(2),(3) 모두 0 -((a^2 +1)/9 )^(1/4) 0이라면 cot 2theta < 12t^2 -a 이어야 함. (m^2 -1)/2m <12t^2 -a
다시 m=3t^2 -a 의 부호에 따라 경우를 나눠서 풀어보다보면
m>=0일 때 a<=루트(7/9)이면 항상 만족. 즉, t>=루트(a/3)
m>=0일 때 a>루트(7/9)이면 t^2 >(12a+루트(81a^2 -63)) / 63. 그런데 t>=루트(a/3)와 교집합 구하면, 그냥 t>=루트(a/3) 으로 동일.
m<0일 때 a<=루트(7/9)이면 항상 만족 못 함.
m<0일 때 a>루트(7/9)이면 (12a-루트(81a^2 -63)) / 63 < t^2 <(12a+루트(81a^2 -63)) / 63
종합하면,
(2) 0root(7/9) 인 경우: -((a^2 +1)/9 )^(1/4) =루트(a/3)
여기서 루트(a/3) 들어가는 부등호들은 계산 안 해도 직관적으로 자명한 것들임.
직관적으로 보면 별 이야기 아닌데 (물론 계산하지 않으면 정확한 값은 알기 힘드나..) 풀이를 엄밀하게 쓰려니 길어졌군요..
(1),(3) 경우는 답으로 나온 t의 구간 형태 자체가 문제에 주어진 것과 다르므로, (2)경우여야 함.
-((a^2 +1)/9 )^(1/4) a= 3/4이고, 원함수는 f(x)= x^3 - (3/4)x 를 x축 방향으로 -2만큼 평행이동한 것(y축 방향으로는 아무렇게나 이동해도 무방)
-((a^2 +1)/9 )^(1/4) - 2 = -2 - 루트(15)/6. 따라서 p=-2, q=-1. 4p^2 +q^2 = 17. 문제에서 a라는 상수 사용했는데 문제 풀이에서 혼동되게 중복사용해서 죄송합니다^^ (3)번 경우를 문제로 내면 상당히 복잡해지겠군요.
제가 직접낸 문제 맞고요 저는 서울대 수교과가 목표입니다
2002년도인가 그때 평가원 모의 아니면 수능에서 45도 회전시켰을 때
함수가 가능한지 물어서 그 문제에서 아이디어를 조금 따왔어요