(해결완료) 포모 3회 14번 ㄷ, 풀이 오류좀 봐주세요.
게시글 주소: https://orbi.kr/0003153020
친절한 답변 감사합니다ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인생이 슬프다..
-
좀 이기적인가요 7
좀 말걸지 않아줬으면 하는 분들 있는거 나만 그런가;; 인성이 파탄난건진 모르겠는데...
-
정병호 이사람 강의를 제가 들어본적이 없거든요 제가 미적분 개념이랑 기출을 끝낸...
-
우스형은.. 우스형은 이러고 있네..
-
동갑인 선배들이랑 살짝 오히려 어색한듯 말은 놓긴 하는데 이제 선배는 선배니깐 그...
-
의대다니고싶네 2
휴학하고싶음
-
진짜 입소 하루만에 탈출 마려울듯
-
첫연애썰 3
아무것도 없을거 알면서 왜들어옴?
-
한 50조 정도만 그럼 뭐 살때 돈 생각 안 하고 그냥 살텐데
-
꾸준히 장작넣으면서 영차영차하다보면 3시쯤엔 사람많아짐 여러분들도 포기하지 말고...
-
한로로 자처 자처가 좋으면 정류장도 들어봐
-
시대재종이랑 얼마나 차이나려나
-
전 크레파스에요
-
그정도로 유동인구가 많다고? 뷰봇을 넘어선 검색봇 의심도 생김
-
잇올 독재 기숙이 250인데 진짜 이 가격이면 시대기숙가는게 낫네.. 5
잇올 오ㅑㄹ케비싸지 기숙.,
-
졸리네 5
잠온다
-
친목좀 그만하고 뉴비들 질문하면 좀 잘 받아주자는 글이 계속 올라왔었음 올해 현역은...
-
남녀가 거의 만날 수 업었던.. 근데도 판별식이 0보다 큰 사람들이 만앗던..
-
취업에는 지금 학교도 큰 지장이 없지만 여러이유에서 나는 더 높은 학교를 원한다...
-
경제사문 하고 싶었는데 혈육이 경제는 너무 위험하다고 계속 말려서 그나마 흥미있는...
-
일단 연애하다가 같이 쫓겨난 커플만 3쌍 봄
-
이제는 소곱창먹고싶네 ㅋㅋㅋㅋ 걍 음식중독인듯
-
어케 해야댐 ... 06년생인대 병무청 사이트 가서 찾아보고 있는데 잘 몰겟음 ..
-
학교 가는거 너무 무서워..
-
오르비가 아파요 0
ㅡㄱ러게 뷰봇좀 적당히 켜두지 이제야 끄니까 소용이 없잖아
-
폰보고 유튜브보고 오르비보고 하는게 다 스트레스 관리라서 기숙은 별로긴해
-
저는 재종 다니면서 사회 속에서 공부하는 게 훨씬 좋았음
-
뭐부터 해야됨
-
작년 봄까지는 트위스터 박스라는 메뉴가 있었던것같은데 가서 맨날 먹으니까 어느순간...
-
외모에 자신 없는 분들이 학업에 집중 잘하니까 그럴 거 같기도 하면서 학군지가...
-
생기는것같아요 열심히 해보려는 욕심이 있는 자기자신에게 왜이리 열등하냐는 잔인한...
-
지방 메디컬 가고싶다..
-
어카냐 1
개강 떨령 서울권 친구들 있나ㅏ?? ㅜ 오티 어때?
-
반갑습니다 4
오르비언
-
그 대상자가 기분이 나쁠수 있으니 하면 안되는건가 그럼 뒤에서 하는건 괜찮자나
풀이1,2 둘다 틀린 것 같아요. 문제 조건에 det(A)=1이 있는데, 풀이 1 중간에 보면 det(A) = 1+-루트3 /2 이라고 되어 있으니 모순이고 그 경우는 불가능합니다.
풀이2에서도, (A+A^-1 를 간단히 X라고 할게요) X^2 = -E 이면 X= +-i E 인가요..? 예를 들어
X= (0 1
-1 0)
같은 행렬도 제곱하면 -E인데..
아하 계산을 떠나서 논리 자체가 모순이었었군요.
명쾌하게 해결되었습니다ㅎㅎ 감사합니다!
풀이 2에서 제곱의 det가 -1이니까 그냥 행렬의 det는 1이 되면 안되는것 같아요~~ 근데 행렬에서 i를 쓰는 경우는 못 봤는데..
그리고 제곱행렬의 디터미넌트가 음수가 될 수 있나요? 아마 성분이 실수이면 안되는거 같은데..
저는 그냥 해당 식을 만족하는 특정 A를 구하고 det를 역으로 끼워맞추고 있었군요;
아 이거 정말 기본적인 건데 이런 본질적인 실수를 하다니.. 전 이만 수1 복습하러 가겠습니다, 감사합니다!
아. 보니까 풀이 아래에 이미 Geonupark님이 질문을 달아놓으셨군요..ㅎㅎ
풀이1에서 의문은 '이차방정식 꼴로 나타내어져 있는 행렬식에서 근의 공식으로 kE꼴의 근을 구할 수 있는가'?
--> 그렇게 할 수는 없습니다. (다만 이차방정식 꼴 행렬 방정식을 풀 수는 있습니다. 아래에 댓글 달게요)
풀이2에서 의문은 '양변 제곱이 아닌 양변 제곱근이 가능한가'
--> 이것도 불가능합니다. 성립하지 않는 경우가 오히려 대부분입니다.
그러고 보니 아직 해결 안 된 의문들이 남아 있었군요!
풀이1의 의문은 해결이 되었는데, 풀이2의 의문은 아직 잘 모르겠습니다.
양변 제곱은 행렬 문제를 풀 때 자주 쓰곤 하는데 왜 제곱근은 안 되는 것인가요? ±둘 다 구하고 무연근(?)처럼 대입해서 한 개를 지우면 안 되나요?
그것도 마찬가지입니다. 아래에 제가 댓글로 달아놓은 방식처럼 풀어야 합니다.
X^2 =-E를 풀려면, 일단 케일리 해밀턴에 의한 식 X^2 - (a+d)X +(ad-bc)E = O이라고 두시고 변변 빼서
(a+d)X = (ad-bc-1)E 를 얻은 후
a+d=0인 경우와 그렇지 않은 경우로 나눠서 풀어야 합니다. (아래댓글처럼) 이 경우도 답은 무한히 많습니다.
한 예로,
( 0 a
-1/a 0 )
과 같이 a를 변화시켜가면서 얻은 무한히 많은 행렬이, 제곱하면 모두 -E가 됩니다.
따라서 이것만 보아도 X^2 = -E의 해X는 무한히 많게 됩니다.
X^2 =-E를 만족하는 행렬을 모두 표기하면 다음과 같습니다.
( a b
-(1+a^2)/b -a )
어이쿠.. 다항방정식같은 접근을 하면 절대 안 되겠네요..
대학가서 얼른 선형대수학을 배워야 겠어요ㅎㅎ
A^2 -(루트3)A+ E =0을 풀고 싶으시면 이렇게 해야 합니다.
행렬 A의 성분을 차례대로 a,b,c,d라 두시면, 케일리 해밀턴에 의해 A^2 -(a+d)A +(ad-bc)E = O
이 식과 윗 식을 변변 빼면
(a+d-루트3 )A = (ad-bc-1)E
(이렇게 해서 이차 방정식을 일차 방정식으로 바꾸는 것이지요)
(i) a+d=루트3 이라면, ad-bc=1입니다. 네 개의 문자가 2개의 조건을 만족하므로 이러한 실수a,b,c,d는 무한히 많습니다. 이러한 행렬들이 일단 모두 위 방정식의 해가 될 수 있습니다. 대각화(diagonalization)이라는 것이 있는데 대각화 하면 거의 유일한 형태로 표기 가능하긴 하나, 어쨋거나 무한히 많은 답이 있습니다.
(ii) a+d=루트3이 아니라면, 양변을 a+d-루트3으로 나눌 수 있고 그러면 A는 E의 상수배임을 얻습니다. 이 경우 A=kE로 두고(k 실수) 처음에 주어졌던 행렬의 이차방정식에 대입하며 풀면 됩니다. 즉, k^2 -(루트3)k +1 =0. 이걸 풀어서 나오는 k에 대해 kE 형태가 답입니다.
A + A^(-1) = 루트3E
이 식과
A^2 + E = 루트3A
이 식을 동치시키려면 어떤 조건을 추가해야 하나요? 아니면 동치 자체가 불가한가요?
두 식은 동치입니다.
A+ A^-1 = (루트3) E 의 양변에 A를 곱하면, A^2 +E = (루트3) A
반대방향은..
A^2 +E = (루트3) A 의 양변에 A^-1를 곱하면 A+ A^-1 = (루트3) E 이니까요.
(단, 반대방향에서 A의 역행렬이 존재한다는 것은,
조건식A^2 +E = (루트3) A --> A^2 - (루트3) A + E = O --> A((루트3) E - A) = E
로부터 알 수 있습니다. (루트3) E -A가 A랑 곱해서 E니까 A의 역행렬이지요)
와 이제 이해가 되었어요ㅎㅎ
정말 마지막 질문인데, 그렇다면 양변 제곱도 마찬가지로 불가한 것이었나요?
네 동치입니다. 제가 지금은 수업 가야 하는데 아무 때나 더 질문 올려놓으시면 빨리 답변 드릴게요~ (물론 제가 아는 한도 내에서..^^)