2012학년도 수능 수리가형 21번문제 풀이 좀 깔끔한거 없나요?
게시글 주소: https://orbi.kr/0003139868

메가스터디에서 기출 풀이해주는거랑 입시플라이기출문제집풀이나 인터넷 돌아다니는 풀이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고3 수학 쎈 2
이번 3모 51점 4등급 받았는데 쎈 c단계만 풀어도 되나요 4점위주로 다틀리는거 같은데
-
가끔 눈이 안떠지는 게 너무나도 스트레스임
-
오늘도 오르비를 한번 더 알아갑니다
-
이미지? 궁금해요 넵
-
잘자요 8
-
쓸 글이 없네 3
ㅈ됐다
-
방법을 바꾸니까 정답률이 확 좋아졋는데 생각해보니까 이게 내가 원래 글을 ㅈㄴ...
-
효신이형 중간에 눈까뒤집고 흰자보여서 노래에 감상이 잘안되요 0
심상이 너무나도 잘보이는 청년
-
너무 안했나보다 오르비 33
거의다 모르겠네
-
사실 저번에 휴릅한다고 했을때 탈릅할려고 했긴 했음 8
근데 하기전에 갑자기 생각나서 찾아보니까 심찬우패스가 사라진다더라고 바로 취소하고...
-
자야겠다 1
현생탈출 ㅅㅅ
-
일단 우리 지역 근처 일반고는 다 수업때 자습해도 풀어주는 분위기. 물론 모학교...
-
전 왜 열심히 해도 안될까요백분위입니다ㅠㅠ
-
오르비에서 글 많이 읽는데..
-
내신용으로 샀는데 너무 많아서 그냥 고쟁이 풀려고 팔아요ㅠ
-
질렀다 14
-
지금 20일정도 남았는데 화학도 노베고 수학도 공부를 거의 안해서 시간이 없어요ㅠ...
-
옷 사고 보니까 2
내가 좋아하던 애가 작년에 입은 옷이었어 아니 시발;
-
진심으로 궁금하네
-
영상 보기 귀찮은데 알려주실 심심한 사람 있나요
-
통통이도 할수 있습니다
-
8시간인데 도저히 10시간은 못 채우겠음 ㅠㅠㅜ 하루좡일하는 거 같은데도 할 게 너무 많다……
-
4덮 언제임 6
찾기 귀차늠 알려주셈
-
댓글 달아주세요 20
-
말안됨 진짜 설/문디컬 나오는거 아닙니까
-
왜냐고? 그야... 커뮤가 처음이였거든.. 너무나도 무서웠어 다 까더라고 그때가 11월 30일..
-
(2000덕) 어떤 분의 자작문제를 수정해드렸습니다 5
원본) https://orbi.kr/00072763458 첫 풀이과정 명시 정답자...
-
십만덕이면 뭐 못사요? 16
나도사고싶어
-
화학을 해야하는 이유 11
-
동선이 개꼬이네 몰라! 일단 가!!
-
아침에 일어나서 한다는 나쁜생각하기 싫은데
-
메타에안끼기 8
그것이 얇고 긴 메모장 옯생을 즐기는 법
-
무지성 화생 지방사는 사람들 잘 알걸? 무지성 화생 하는 (주로) 여학생...
-
날 그리워할 사람이 잇을까
-
미쿠 귀여워 10
-
오르비 안녕히주무세요 24
-
게이글쓰는걸로 맨날까이고 저격 당했는대 무시하고 꾸준히 쓰는거보면 사실 강철멘탈일수도 행복해라
-
그 숫자가 워낙 많아서 생지는 표본이 심각해지지는 않음
-
흠
-
대충 연고공~약수 정도 나오지 않을까 잘하면 지방의?
-
웬만하면 다 친하게 지내고 싶다
-
부활해라 게이야
-
작년 현역 3모 58에서 올해 3모 80 나옴 근데 미적은 해도 해도 는다는 느낌이 안 듦
-
이거들어바 14
굿
-
아무리 그래도 비서울 비대구에서는 아직도 무지성 생지가 많은데
-
캬캬캬 251130 해설 ㄱㄱㄱ
전 작년에 저렇게 풀엇는데...
작년에 신승범쌤이 저런유형 나올거같다고 수해에서 강조해주셧슴 ㅇㅅㅇ
이거 얼마 전에도 어떤 분이 질문 올려서 누군가가 친절하게 대답해준 글이 있어요. 제 의견으로도 법선벡터로 푸는 게 가장 깔끔하고 직관적으로 들어오는 것 같습니다. 문제에 등장하는 면이 3개인데요, 그 중 두 개는 고정되어 있고, ABC 포함하는 면이 유동적이라고 볼 수 있겠지요.
ABC면적은 고정되어 있으니, ABC면과 면x-2y+2z=1 사이의 각도가 최소일 때를 묻는 문제이고요, 따라서 두 면의 법선벡터 사이 각도가 최소면 됩니다.
글로 읽으시면 헷갈릴 수도 있을테니 공간좌표에다가 그리면서 생각해보세요. yz평면의 법선벡터(1,0,0) 그려보시고요, ABC의 법선벡터는 (1,0,0)과 60도 각도를 이루어야 하니, 원점을 시점으로 ABC의 법선벡터를 그려보면 x축을 축으로 하고 원점을 꼭짓점으로 하는 원뿔의 밑면의 원주 위를 빙빙 도는 모양이 될거구요. 이 중 (1,-2,2)라는 법선벡터와 가장 각도가 작아질 때가 언젠지 보면 직관적으로 당연히 세 법선벡터가 한 평면 내에 있는 경우 중(2가지 경우인데, 그 중 하나이겠지요.)에서 일어나게 됩니다. 이 정도면 충분히 직관적이지 않나요..?
따라서 그 최소일 경우의 각도를 t라 하면, t = s-60도 (단, s는 (1,0,0)과 (1,-2,2)가 이루는 예각. cos s = 1/3)
cos t = cos s cos 60 + sin s sin 60 = (1/3) (1/2) + (루트8)/3 (루트3)/2 = (1+2루트6)/6
답은 1+2루트6. 이렇게요.
오 그러네요.. 감사합니다^^
x-2y+2z=1의 법선벡터 v1=(1,2,2)와 yz평면의 법선벡터 e=(1,0,0)은 고정되어 있습니다. 여기에 삼각형 ABC를 포함하는 평면의 법선벡터를 v2벡터라고 하면, 결국 원하는 정사영의 넓이의 최댓값은 v1벡터와 v2벡터가 이루는 각이 최대소일 때가 됩니다. 따라서 e벡터와 v1벡터, v2벡터를 시점을 일치시킨 후 v2벡터를 (v2벡터의 크기는 고정하고 각을 변화시키면 v2벡터는 e벡터를 포함하는 원뿔의 흔적을 남게게 됩니다. (나) 조건 때문에 v2, e벡터의 각은 일정)
따라서 v1벡터, v2벡터가 이루는 각이 최소가 되려면 e벡터와 v1벡터가 포함된 평면에 v2벡터가 놓여 있어야함을 알 수 있겠습니다.
감사합니다^^
저두 실제 시험장에선 법선벡터 두개로 비교해서
두 평면이 이루는 각 구하는 공식에 두 법선벡터 대입하고
잘 비비니까 보기에서 답이 될수 있는게 2(루트6)+1 밖에 없어서
겨우 풀었었네요 ㅋㅋ
그냥 삼각형이있는 평면 법선벡터를 (1,a,b)로 놓고푸시면 어처피 벡터비로푸는거니까 그냥 계산으로 나옵니다
아 이 풀이도 말씀드리려 했는데 까먹었네요.. 이렇게 풀어도 간단하지요. (고맙습니다..ㅎ)
(1,a,b) 랑 (1,0,0) 이루는 각도 60도니까 a^2 +b^2 =3 나오고요, 이 때
(1,a,b) 랑 (1,-2,2)가 이루는 각도의 cos값인 (1-2a+2b)/6의 최댓값을 구하는 문제니까,
다시 쓰면, a^2 +b^2 =3 일 때, (b-a)의 최댓값 구하는 문제입니다. 반지름 루트3인 원에서 기울기 1인 접선 그어보면 최댓값이 루트6 인 거 바로 나오지요. b-a=루트6 대입하면 cos최댓값이 (1+2루트6)/6 이라서 문제의 답을 얻습니다.
참고. 삼각형의 법선벡터가 (0,a,b)인 경우도 따져줘야 엄밀하긴 한데 결국 이 경우는 필요없습니다.
코시슈바르츠 부등식 말고 삼각치환 해보세요 그게 아마 출제의도 같네요
아니면 벡터의 내적이나 원과 접선 둘다 이용가능
작년 셤장에서 그냥 무식하고도 단순하게 푼것같네요...ㅠㅠ
삼각형 ABC와 yz평면이 이루는 예각의 크기는 60도이고
(1,-2,2) (1,0,0)이 이루는 각의 크기를 b라 놓을 때 cosb는 3분의1이 되죠..
삼각형 ABC와 평면 x-2y-2z=1이 이루는 각의 크기는 b+60 혹은 b-60이 되는데
정사영의 넓이가 최대가 되려면 예각 크기가 최소가 되어야 하므로
b-60이 되고...
6cos(b-60)을 구하면 답이 나오죠