(스포주의) 10월 나형 30번을 풀고도, 27번을 못 푼 분들에게.
게시글 주소: https://orbi.kr/0003114160
사실 제가 단언이나 확언같은 건 굉장히 싫어하는 편입니다만, 가르친 학생 중 한 친구가 마찬가지로 오늘 30번을 실제 노가다로 풀어서 맞고도 27번을 틀려와 제 가슴을 찢어(?)놔서 이렇게 조언을 남깁니다.
나형 시험지에서 미적분과 통계 문항에서 나오는 문항은 대략 15~16이라는 것은 아실 겁니다. 실제 단원별로 보자면 함수의 극한 / 미분 / 적분 / 확률 / 통계 에서 각각 2~3문항이 출제됩니다.
여기서 확률 단원에서 2~3문항이 출제된다고 했는데, 확률 단원은 다시 중복조합과 이항정리 / 확률의 정의 / 조건부확률과 독립시행 정도로 나뉜다고 볼 수 있습니다. 그럼 동일 개념으로 2문제를 출제하는 일이
죽어도 없는 평가원의 입장에서는 보통 각 단원별로 한문항을 내거나 아니면 한단원을 소거하게 됩니다.
그럼 중복조합과 이항정리에서 한 문항이 출제될 수 있다는 가정을 하게 되겠군요. (두 문제가 다 나올 확률은 거의 1% 미만입니다. 물론 이항정리의 여러 공식들이 확률 계산에 이용되는 것은 예외입니다.)
27번 문제 해설을 할 줄 알았더니 왜 이런 쓸데없는 분석을 하고 앉아있느냐?
많은 친구들이 경우의 수라는 단원에 대해 크게 부담감을 갖고 있습니다. 왜냐하면 예전 7차 교과과정에서는 이 단원이 수능의 직접 출제 범위에 속했기 때문에, 직접적인 경우의 수를 묻는 문제들중에도 꽤나 고난도를 자랑하는 기출문제가
많기 때문입니다. 따라서 기출문제를 복습하는 과정에서 다양한 순열 조합문제들을 풀었을테고, 그 와중에 어려움을 느끼는 친구들이 있죠.
하지만 중요한 것은 현재 수리영역의 출제 구조 상, 나형에서 직접적으로 물을 수 있는 경우의 수는 중복조합 뿐이라는 겁니다. 아니 왜? 고1 때 순열 조합도 다 배웠는데 중복조합만 나온단 말이냐?
그 이유는 경우의 수 및 순열 조합은 고등학교 1학년 교과과정으로 내려갔기 때문에 수능의 직접적 출제 대상이 되지 못하기 때문입니다.
그럼 순열 조합은 안나오냐? 공부할 필요가 없느냐? 아닙니다. 확률 계산에 순열 조합은 필수적 개념이므로 반드시 공부하셔야 합니다.
그럼 도대체 니가 하고 싶은 말이 무엇이냐?
수능시험에서 경우의 수 또는 방법의 가짓수를 질문 대상으로 삼는 문제는 무조건 중복조합을 확신하고 접근해도 괜찮다는 이야기입니다. 순열 조합의 경우 확률의 계산과정 일부로 물을 수 밖에 없기 때문에 경우의 수를
직접적으로 묻는 것은 다시 한번 이야기하지만 무조건 중복조합이다! 라고 생각하고 풀이를 시도해보시라는 겁니다.
27번을 못 푼 학생은 크게 세 가지 경우라고 봅니다. (시간 부족으로 문제를 못 푼 경우는 패스)
1. 아예 문제 자체를 이해를 못했거나 지레 겁을 먹은 경우
2. 경우의 수 문제라고 생각하고 직접 경우의 수를 세거나 순열, 조합으로 접근해 본 경우
3. 수열 문제라고 생각하고 규칙성을 찾으려고 접근한 경우
저런 시도 자체가 나쁘다고 생각지는 않으나, 만약 여러분이 저 문제가 중복조합이라는 확신만 있었다면, 당연히 주머니에서 무언가를 뽑는 경우 내지 방정식을 만드는 방식으로 먼저 사고를 해보려 했을겁니다.
개인적으로 수능에 출제되는 모든 중복조합은 방정식으로 바뀔 수 있으므로 중복조합에 대한 개념 자체가 약한 학생들은 기본 문제부터 방정식을 만들어가며 훈련해보시길 권해드립니다.
결론을 내려드리자면 만약 시험에서 경우의 수를 질문한다면 장담컨데 이 문제는 중복조합입니다. 중복조합을 계산할 수 있냐는 출제의도 자체를 알고 들어가는 것이니 유리해질수 있다는 겁니다.
괜히 어려운 경우의 수 기출문제 푸느라 아직도 수고하는 친구들이 있는데 물론 그 노력이 헛된 것이라고 얘기하진 않겠습니다.(반드시 확률에 도움이 되니까요)
하지만 그 대상이 아직 중복조합도 못푸는 학생들이라면, 무조건!! 중복조합부터 복습하시고! 포카칩모의고사나 한석원 모의고사 등을 풀어보시면서 이미지 트레이닝을 해보시는 것도 좋다고 생각됩니다.
쓰다보니 너무 길어졌네요. 뻘글입니다. 이미 아시는 학생들도 많으실거에요. 아직 모르는 학생들을 위해 쓴 글이니 너그럽게 봐주세요 ^^;;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
팔로우 받습니다 3
맞팔은 안해드립니다
-
급성 철 중독으로 사망할수도 있음
-
돈보내주세요
-
110530569007 신한 1원만 줍셔
-
작수 끝나고 대체적으로 1컷 예상이 42-41이었고 44 부르는 새끼 있으면 때려...
-
라떼는 아이민 앞자리가 7 8 9였는데
-
님드라 나 언매 4
하루에 평가원 한세트후 분석 교사경 부족한부분 10문제씩 꾸준히하고 있는데 부족한가...
-
확통런 기하런때메 미쳐날뛰는거 아님? 진짜 매년 기조가 바뀌니까 너무 공부하기가 어렵네
-
ㅇㅇ 보내주셈
-
저는 현재 지거국 컴공 2학년을 마치고 육군에 복무 중입니다. 제가 생각하기에는...
-
우리한테 피해준 건 아닌데 당사자 선에서 잘 마무리 해야죠 사람 됨됨이를 떠나서...
-
그런건가요
-
줴드궤줴~(제발!!!)
-
지금까지 한 100명 번따함 연락된건 20명 이성적 쌍방호감까지 간건 2명 번따가...
-
010.......
-
어떻게 생각하시나용? 확통 시작한지 3주됐고 공통이 완벽한 느낌은 안들어요
-
심심하면 거세요 홍준표 전화번호임
-
무슨 행동을 할 때 어떤 일이 일어날지는 생각해봐요 1
근데 그게 처음부터 되는 사람은 없어요 한 번 어디에서든 크게 디여봐야한다고...
-
생각안하면 오이카와처럼 저격을먹는수가있어요~
-
예스 아이 엠 0
네 저는 M입니다
-
손이 안간다
-
팜하니님은 조속히 사과문을 개제하고 복귀허시기 바랍니다 근데 사과문 올리고 반응하면...
-
0.75십만 3
-
못떠나겠어요
-
영어 진짜 하기 싫은데 12
어칼까요 (웬만하면하는방향으로) 여러분은 어케공부하시나어
-
나 따인적있음 1
고딩때 친구들한테 대학을 따임 ㅏ.
-
번호 따 8
서 주세요
-
기다리고 있어요
-
독서 관련해서요 일단 문풀-채점-지문 문단간 어떻게든 주제 살려서 읽기-글에 숨은...
-
삼반수... 1
재수해서 강남대 재학중입니다. 현역:55444(사탐) 재수:43443(사탐) 이...
-
번따메타노 4
자야겠다
-
왜클릭? 추신:ㅁㄱㅁㄱ님 글을 보고 남에게 욕먹는 것을 무서워하지 않기로 마음먹었어요
-
이거 무섭네 2
왜 볼드체로 쓰니...
-
무슨 의미임?
-
아 오르비재밋다 2
그래 이맛에 오르비하는거지 난 여기가 맞는 위치인듯 ㅋㅋㅋ
-
시간이들겠지 예이에 시간이들겠지
-
최고차 1인 삼차 fx 그것의 변곡점을 지나는 일차 gx 변곡점이 1이면 f-g=...
-
그래서 안입고다님
-
뭔가 ㅈ된 삘이 오는데 관성으로 계속 수학만 하고있다...
-
일단 저는 국어 허수이기 때문에 독->문->언 순으로 풀고 40, 25, 15 씁니다.
-
여르비한테까임 5
어떻게하면내가널가질수잇을까?? 내가널얼마나좋아하는데
-
기출문제 추천받습니다...! 미/확/기/수1/수2 모두 가능 해설을 꼼꼼하게...
-
오늘 따임 10
아팟음..
-
그럴 일 없다노
-
생각없이 살아서 죄송합니다
-
살려주시라요 2
타이레놀이 효과가 없는레후
-
국어:김승리 (독서,문학) 풀커리 탈예정 : 개늦게 합류해서 3월 5일 에 오리진...
제목 보고 뜨끔해서 들어왔는데 정말 도움 많이되는글이네요ㅠ 감사합니다
헐.. 이글보고 돈오했네요 가짓수 잘못세서 96점맞았는데 ㅠㅠㅠ
수능시험에서 경우의 수 또는 방법의 가짓수를 질문 대상으로 삼는 문제는 무조건 중복조합을 확신하고 접근해도 괜찮다는 이야기입니다.
그렇군요! 저도 27번이 경우의 수라고 생각해서 그걸로 접근하다가 틀렸네요 ㅠ
전 27번 경우의수로풀었는데..
엄청난 도움 감솨요ㅠㅠㅠㅠ
딱 저네요.. 30번은 몇번해보니 규칙나와서 맞았는데 27번은 괜히 어렵게 생각해서 ㅠ.ㅠ
27번 걍 직관으로 셌는데
6C3해서 3개 크기 다 다른거 찾고
한가지 판만 세개 쌓은거 6개 추가하고
같은판 2개 다른판 1개 쌓은경우 추가하고
56개 나오던데
근데 풀이보니 걍 중복조합
ㅋ 허무했음
저도 윗분처럼 풀었는데... 중복조합을 쓰니 1분만에 답이 나오는 문제였네요
27번 수형도로 풀고... 나중에 보니 중조...:;
졸라 쉽드만