수학 칼럼(3)-미분가능성과 연속성
게시글 주소: https://orbi.kr/00030464795
네.
미분가능성과 연속성의 유명한 문장으로 시작해 보겠습니다.
간.미.연-간단히 말해 미분 가능하면 연속이다.
일반적으로 알고 있는 문장입니다.
그런데 주어가 누구냐에 따라 참이 되기도 거짓이 되기도 하는 문장이지요.
우선 미분 가능에 대해 알아보겠습니다.
다음 문제를 보겠습니다.
2013학년도 사관학교 문제입니다.
(당시 시험은 ㄱ.ㄴ.ㄷ 문제를 고르는 문제가 5문제 정도 출제되었습니다. 그 중 한 문제입니다. 지금처럼 모르면 5번이 안 통하던...)
모든 실수 x에 대하여 정의된 함수 f(x)가 x=a에서 연속일 필요충분 조건은
f'(a)의 값이 존재하는 것입니다. 미분계수 f'(a)의 정의는 수식으로...
따라서 다음이 성립합니다.
따라서 위 사관학교 문제의 정답은 ②번입니다.
여기서 ㄷ.을 눈여겨 볼 필요가 있습니다.
위의 세 번째 조건의 m=n일 같은 경우는 함수 f(x)가 x=a에서 미분 가능과 상관없이 좌,우 극한이 같게 되어 값이 존재하게 됩니다.
m=n=1인 경우를 Thomas Calculus 책을 번역한 대학교재에 중심화 차 몫이라고 번역되어 있습니다.
그래서 편의상 m=n이고 분모의 (m+n)을 제외한 식을 중심화 차 몫 꼴이라 하겠습니다.
참고로 {f(x+h}-f(x)}/h 을 페르마 차 방정식이라 합니다.
중심화 차 몫에 대한 문제는 많이 출제 되어 왔고 샘도 자주 출제했었습니다.
관련 내용 다음에 다룰까 하다 연관되는 내용이라 내용이 길어져도 여기서 바로 다루겠습니다.
다음 문제를 보겠습니다.
함수 f(x)가 x=0, x=-1을 제외한 모든 실수에서 정의되어 있고 a_n의 n이 자연수 이므로 a_n의 우변은 바로 5f'(n)입니다. f(x)가 미분 가능해서...그래서 풀이가 다음과 같습니다.
주의해야 될 점은 역시 미분이 되지 않을 경우입니다.
관련 문제는 Quiz로 아래에 배치해 놓겠습니다.
자. 그럼 지금까지 내용 정리해 보겠습니다.
실수 전체에서 정의된 함수 f(x)가 x=a에서 미분가능할 조건과 필요충분 조건은 f'(a)가 존재하는 것이다.
그런데 도함수 f'(x)는 x=a에서 연속일까요?
다음 함수를 보겠습니다.
이 함수는 x=0에서 정의되어 있고 f'(0)이 존재하므로 모든 실수에서 연속이며 미분 가능한 함수입니다.
그런데 도함수는
x=0에서 불연속입니다.
따라서 f(x)가 미분가능하더라도 f'(x)의 연속성은 보장받지 못한다는 얘기가 되는 것이죠.
처음으로 다시 돌아가 보겠습니다.
간.미.연-간단히 말해 미분 가능하면 연속이다.
f(x)가 x=a에서 미분가능하면 f(x)는 x=a에서 연속이다.(참)
f(x)가 x=a에서 미분가능하면 f'(x)는 x=a에서 연속이다.(거짓)
다음 기출 문항을 보겠습니다.
문장 마지막에 h''(x)가 연속이다.는 조건을 넣은 이유가 여기에 있다고 볼 수 있습니다. 그럼 h''(x)의 x=a의 좌우 극한값과 함숫값이 같다.를 이용하여 간단히 풀 수 있는 문제가 됩니다.
한 가지 더
다르부 정리라고 있습니다.[교과 외]
다르부 정리는 도함수가 사잇값 성질을 갖는다는 정리입니다.
그런데 도함수는 연속성을 보장 받지 못하다는 것을 알았습니다.
그럼 이렇게 정리할 수 있겠네요.
연속함수는 사잇값 정리를 만족한다.(참)
사잇값 정리를 만족하는 함수는 연속함수이다.(거짓)
그래서
실수 전체에서 정의된 연속함수 f(x)의 도함수 f'(x)는 x=a에서 연속이다고는 할 수 없지만 사잇값 정리를 만족한다.
관련 문제들 Quiz 입니다.
1번 중심화 차 몫 관련 문&이과용
2번 중심화 차 몫 관련 이과용
3번 중심화 차 몫 관련 킬러급
4번
이상 랑데뷰 수학 황보백 선생이었습니다.
(아, 저는 성이 황보입니다. 대구 송원학원 소속)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
베르테르 77번 0
진심으로 문제 푸는거보다 저 그림 안에 풀이 우겨넣는게 더 힘들엇음 이거 손풀이를...
-
궁금 진짜내추구미임
-
라유는 잘구에오 0
맥모닝만 먹구
-
2학년인데 아직도 학교 고른거 후회도 되는데 원래 이럼? 4
24학번입니다 성한 상경~인문 (정확히 확인 안 해봄) vs 시립대 전전컴 이였는데...
-
얼버기 1
D-270
-
한국 N타워·日 도쿄타워 함께 빛났다…'한일 수교 60주년' 0
한일 양국이 올해 '국교정상화 60주년'을 기념해 남산 N서울타워와 도쿄타워를...
-
억울해하면 안되는거 아는디 아쉬워서 잠아 안오네요 심리학과 가고싶어서 중대심리랑...
-
끔찍할뻔했네요
-
얼버기 0
흐흐
-
하지만 매일 즐겁기만하면 인생이 나락가는 걸.. .
-
ㄹㅈㄷ 얼버기 6
-
진짜 왜?
-
망 0
-
함 0
-
레 0
-
크 0
-
함 0
-
재미없다
-
베르테르 38 0
외적벅벅
-
예비고2 뉴런 1
수2는 예전에 한번했었어서 이번 방학에 기억 상기시킬라고 뉴런을 들었어요...
-
돈만 되면 0
돈만 되면 시대 기숙을 갈까요 아님 독학기숙 가서 시대 라이브를 낄까요 시대는 os 합격이에여
-
괜찮아 링딩딩딩딩딩 링딩딩딩딩
-
함 풀어볼까
-
고닉중에 오르비를 가장 수능커뮤답게 하는건 나 아닐까 10
라는 생각을 햇음
-
베르테르 37번 0
ㅇㅇ
-
ㅈㄱㄴ
-
기차지나간당 3
부지런행
-
지금 뉴분감 빠르게 돌리고 시즌2부터 시대인재 라이브 커리 타려하는데 선생님 추천...
-
블랙 러시안 인듯
-
수능 말아먹은 재수생(05년생)인데요 수능을 응시하기만 해도 갈 수 있을 것 같은...
-
아빠 깨지않았을가 무섭다 어디갔다오냐하면 뭐라하지 담배냄새까지배서 수상항듯
-
24수능 투과목 표점이 폭등했잖아요.. 그래서 많은 사람들이 25때 투과목을...
-
1. 서강대 걸고 반수 생각하고 있어요. 3학점 3과목 신청하고 과감하게 한 과목은...
-
미안하다
-
자야지 0
-
하람이 어케 그러냐 짘짜 모르겠아 인생살면서 언젠가 다시한번 그럴날이오겠지
-
베르테르 36번 6
슬슬 잘까
-
새르비 새르비 하길래 한 번 들어와봤더니 이상한 글들이 정말 많네요 ㅜㅜㅜ
-
오르비 잘 자! 14
좋은 꿈 꾸기
-
고딩땐 진짜 열정많고 혈기왕성 했는데 지금은 그냥 무기력함 왜지
-
밤마다 오르비에 떨치러 간다고 글 싸는 새끼들이 한둘이 아니었는데 왜 나에 대한 기준만 엄격함?
-
왜저러는거지
-
ㅈㄱㄴ 먼가 코가 무겁고 조이는 느낌
-
라방중인데 시청자좀 차면 넣는대 tik-tok.com/live/06
-
우울 불안 그리움 집착 번식본능 등등
-
진짜 오래전애 배운거라 꺼먹었어요
-
인생의 쓴맛을 겪고난뒤로 무감각하고 건조한 사람이 된것같음...
-
난말이야 솔직히 말할게 언제 어디서든 착하게 말하고 싶은데 빌런들이 항상 있더라고...
-
메타의 정상화 1
박력있는 여자는 멋있음
-
이젠 대가리에 일과 돈밖에 없는 냉철한 사람이 되어야 함
![](https://s3.orbi.kr/data/emoticons/rabong/022.png)
검색하다가 찾은 글인데 너무 도움되네요 ㅠㅠ 이부분이 항상 애매했는데.. 감사해요..!네~~아시겠지만 22학년도 9월 모평 22번이 중심화차몫 얘기입니다.
그 문제에서 h=>0+ 은 평가원의 배려라고 할수 있습니다. h=>0 으로 해도 상관없다는...랑데뷰 기출과변형,N제 등에 관련문제,변형문제들 많이 탑재되어 있습니다~~
그런데 제가 이런글도 남겼엏네요ㅎ