극한이 잊혀져 가네요...(한번 들려서 풀어보세요~)
게시글 주소: https://orbi.kr/0003024863
일때
극한 의 값은 무엇일까요.....??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생지 이상? 그정도면 그냥 생지 중에 하나 할 생각인데
-
닉 뭐로 바꾸지 0
-
더럽고 게으른 새끼가 아니라 진짜 아무것도 하기 싫어 근데 그게 게으르고 더러운...
-
학고반수가 나을까요? 아니면 2학점 교양 원격강의 토익리스닝? 이런거라도 들어서...
-
어쩌다 작년 책이 생겼는데 저걸로 독학 ㄱㄴ한가요? 통사는 학교 프린트 +...
-
스케일 툭 치면 다 나옴 단조 장조 뭐든 가능 미션스쿨 반주 셔틀 경력 있음 제발저요
-
닉 뭐로 바꿀까 3
흐음... 고민되는구나
-
06이고 이번년도 평백84받고 국숭라인 자전 붙었는데 27대입에선 지기균 조건이...
-
한양인터칼리지 신설인데 새터나 엠티는 안하는건가요 ㅋㅋ
-
한완기 수1,2 사려하는디 한완수 공통 (상),(중) 부터 봐야하나요? ㅇㅣ제 곧...
-
저게 되는 사람들은 뭘 해도 성공할 사람들임.
-
미적 공부법 0
올수 76점 3틀입니다 올해는 빨더텅 1회독 작년 수특수완 2회독 씨뮬 ebs...
-
꼭 좋은건 아니겟죠? 좋게말해야 몰입이지 고통스럽지 않을정도면 그냥 뇌를 덜 쓴거고...
-
안녕하세요. 얼마 전에 1주일 동안 영어 교재 무상 지원을 진행하였습니다. 사실,...
-
화작+확통+사탐으로 메디컬 갈 수 있는데 어디있나요? 0
그리고 백분위는 어느정도 나와야하나요?
-
걍 프린트 뽑을걸 엄마 미안해
-
갑자기 돌아보니깐 공부해야할것이 너무많음 방학동안 이룬게 없다니
-
이거 정량적으로 점수까는 대학있음? 수시나 정시나
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
섞여있는건가요???
-
지금 공부를 거의 안 한 개허수인데 지금부터라도 하려고 하는 중 지금 세젤쉬 하고...
-
흠 경제 내신 전교 2등이라 2등급 ㅋㅋ..고 3때 3월 모고는 1이였는데 그...
-
베르테르 71번 5
이제 담배펴야지
-
이화여대를 1학기 학고를 받고 2학기 휴학을 하려하는데 학교가 제대로 안 알려주고...
-
2d만큼 변형됐을 때 속력 최대라는 건 알겠는데 그럼 2d만큼 압축됐을 때도 속력...
-
강대 퀀텀관 ㅅㅂ 담배냄새남....
-
경제 불평등은 최소수혜자에게 이득이 되어야'만' 정당화 될 수 있다 내 생각엔 맞는...
-
고역이다 고역 ㅠㅠ
-
경제하고싶다 0
재미원탑경제 끼고 사문경제하고싶어 근데 지1은 점수땜에 버리기아까운데
-
누워서 과자쳐먹으며 유튜브 보고싶어
-
6등급인데 수1 수2 워크북 공부할때 결국 풀리긴 하지만 처음 봤을땐 시발점 노베...
-
정말 하기싫다, 머리에 넣으면 다시 뱉어낸다.. 하지만 이 짓거리 1년 더 하기...
-
섞어서 안하고 일단 무조건 그것만 잡고 팜?하니 내가 너무 왔갔다 하나..
-
이해가안됨
-
1월달에 잇올 다님=너무 멀어서 포기함 지금 독서실 다님=나름 만족중 근데 건물...
-
확통+사탐 vs 미적+사탐 한약수 목표 뭐가 좋을까요? 6
확통+사탐 vs 미적+사탐 한약수 목표로 뭐가 더 좋을까요? 한약수 중에 아무거나 상관없어요
-
오프라인 전용이랑 인강 차이 나는 편인가요?
-
보약n제 3
라고 하시죠 마약이라는 말......
-
제노 챌린지 샤프 (2025 수능샤프) 컴퓨터용 사인펜 대학수학능력시험 채택...
-
일찍일어나는법 0
빰빰빰빰빰빰빠라밤빰빰빠라밤빰빰빰빰빰빰빰
-
내가 수능 더 잘봤어 이 씹련아. 잘 살아라.
-
저녁 13
돼지갈비
-
일하기 싫어.. 5
-
신이시여...! 1
제발..
-
내가 핑계대는 것들 다 보면 걍 좆까고 공부하러 가면 해결되는 문제들 뿐임. 늦게...
-
추가모집은 0
수시 정시 다 떨어진 사람만 쓸 수 있는거임?? 무한으로??
-
뭐 마실까 사이즈 업 할 거임
-
헤응
-
과대 인사했는데 뻘쭘할거 같아서 답변해주고 싶은뎅…
0이염?
다시 풀어보세여~
생각없이 풀면 안되요~
음 분자는 +1, -1 진동하고 분모가 양의 무한대로 가니깐 0에 수렴하는거 아닌가요? 읭 감이 죽었나 ㅠㅠ
에구궁....다시 생각해보세여~
혹시 문제를 잘못 내신거 아닌가요 ㅠㅠ lim(n->양의 무한대){(-1)^(n-1)/n}=0 맞을텐데...
Sn = (k=1)시그마(n) {(-1)^(n-1)/n}
이렇게 두시는게 맞지 않나요
첫째 줄 두번째 등호가 성립 안할텐데요
저는 두번째 것만 보고 풀어놓은 것이고, 님의 원하시는 것은 세번째 것인 듯..
으아 무지 횡설수설이네요 ㅠㅠ 제가 전하고 싶은 말이 잘 전달되길... 노트와 펜이라면 훨씬 쉽게 설명할 수 있을텐데..
에구궁...무슨 말이지는 알겠는데용...
어떻게든 봐도 맞는 말인뎅....여튼 다시 풀어 보세영..그냥 10까지만 봐도..양수인데
윽 좀만 대입해보면 되는거를 너무 쉽게 생각했네요 ㅋㅋ 왜 1, -1/2, 1/3, -1/4, ... 으로 본건지 ㄷㄷ
그래도 lim(n->양의 무한대)[{(-1)^(n-1)}/n]=0은 맞다고 생각합니다 ㅠㅠ
답이 자연로그로 나오는걸 보니 문과인 저는 못풀겠군요 ㅠㅠ
테일러전개 이용하면 ln2이긴 한데 그거말고 더 고등학교 과정에 적합한 플이는 모르겠네요 ㅠㅠ
저도 처음에 테일러 급수로 풀었다능...ㅋㅋ
이거 고등학교과정으로 풀 수 있나;
인서울 할정도 실력이면 풀 수 있을듯... 잘보면..
ln(1+x)의 테일러전개식과 아벨의정리를 사용하면 윗분들 말씀대로 쉽게 구할 수 있습니다
고교과정을 생각해본다면 우선 S_2n을 다시쓴다면( 1+1/2+1/3...1/2n)-2(1/2+1/4..1/2n)이고 정리하면 1/n+1+1/n+2...1/n+n이됩니다 여기서 분자분모 n으로나누시면 많이보던식이 튀어나오고 S_2n-1때도 비슷한방법으로 구하면 답은 ln2
대단하시군요.. 아벨의 정리를 생각하시다니..
고교과정 해설도 좋군요. 정답입니다~
고교 과정은 아니지만 해설이 하나 더있어요~
문과가 풀 수 있나요??
....마지막 적분 식까지는 구할수 있답니다. ∫(1/x)=lnx 랍니다...
사실상 log(1+x) 의 테일러 전개를 이용한 풀이와 동치이지만, 아벨 정리를 피하는 방법으로 다음과 같은 방법이 있습니다:
임의의 x ≠ -1 에 대하여,
1/(1+x)
= (1-(-x)^n)/(1+x) + (-x)^n/(1+x)
= (1 - x + x^2 - ... + (-x)^(n-1)) + (-x)^n/(1+x)
라고 합시다. 위 식의 양 변을 0에서 1까지 적분하면,
log2 = 1 - 1/2 + 1/3 - ... + (-1)^(n-1)/n + ∫_{from 0 to 1} (-x)^n/(1+x) dx
입니다. 그런데
|∫_{from 0 to 1} (-x)^n/(1+x) dx|
≤ ∫_{from 0 to 1} |(-x)^n/(1+x)| dx
≤ ∫_{from 0 to 1} x^n dx
≤ 1/(n+1)
이므로,
|log2 - S_n| ≤ 1/(n+1)
을 얻습니다. 따라서 n→∞ 의 극한을 취하면 원하는 결론을 얻습니다. (뿐만 아니라 S_n 과 그 극한값인 log2 사이의 오차도 알 수 있지요.)
이 풀이는 어떨지요...1+1/2+1/3+1/4+1/5+....1/n ≒ ln n (큰 n에 대해서...)
1/(1+n)+1/(2+n)+1/(3+n)+.......1/2n
ln(2n) - ln(n) = ln2
주어진 근사식만으로는 불충분합니다. 주어진 정보만으로는, logn보다 느리게 증가하지만 여전히 무한대로 가는 양들이 있어서 서로 경쟁할 수도 있거든요. 다음의 좀 더 정확한 근사식
1 + 1/2 + 1/3 + … + 1/n = logn + γ + o(1)
을 사용하면 되겠네요. 단, γ는 Euler-Mascheroni 상수입니다.
아하...조화급수와 로그함수간의 차이로 생기는 마스케로니 상수가 없다면
제가 쓴 저 조잡한 식은 성립이 되지 않을 뿐더러 n이 적당히 큰수 였다면 저는....망했겠군요...마스케로니 옆에 있는 상수는 무엇인가요
Small-Oh 표기법입니다. 어떤 특정한 함수를 가리키는 것이 아니라, f(x) = o(g(x)) 라는 것은 f(x)/g(x) 가 0으로 수렴함을 뜻합니다. 즉, 이 경우 o(1)이라는 양은 n→∞ 일 때 0으로 사라지는 양을 가리키지요.