수학 고수 오르비언님들아~!^^ 헬미^^
게시글 주소: https://orbi.kr/0003016728

0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜임?
-
할게너무많음 내일 아침부터 과외가야대..
-
킹바다아ㅛ여ㅛ
-
물리 지구 딱대
-
하나만 골라줘 0
ㅇㅇ
-
1~8: 251109~251113, 250921, 250612, 250611 (대충...
-
사놓고 한번도 안봤네 하.
-
국어 박광일 문학 유대종 독서 수학 한완수 - 심특 - n제 영어 이명학 풀커리
-
오르비에서 상식인지 여부로 논란된주제인데
-
불교로 따지면 석가모니가 깨달음을 얻은 나무가 보리수나무라는 것을 아는 것과...
-
할만하지 않았으면 내가 먹고살 수 있을리 없을 것 매출 감소폭이 10%밖에 안되는데...
-
설거지 그만..
-
남자보다차가조아 3
다행이야
-
피곤해 3
자야징
-
대성은 수학이 빵빵해서 좋아요!!! 듣고계신분 있나요???
-
팔꺼면 설명이라도 하고 강매해야지 설명도 없이 강매시키네 ㅈ싸가지 없네
-
국어 방향성 0
기출은 따로 문제집 안사고 인강문제집만 들어도 되나요? 그리고 인강풀커리 vs...
-
"정오표"
-
이원준t 강의를 들어보고 막 코드의 중요성에 대해 설명하는데 전엔 안와닿았던게 왜...
-
아 내성발톱인가 1
개아프다
-
볼륨이 너무 크지 않나 원래 공부습관 잘 잡혀있는 애들 아니면 솔직히 완강 빡셈...
-
나도 힘들다 세상아~
-
동생이 중딩인데 학년말에 진로희망 쓸때 담임이 10분 주고 걍 대기업 직원이라고...
-
오류빼면
-
기숙 추천 좀요 0
제곧네
-
근데일본어 1도못함 그냥 망상이었음
-
먼 잠이여 ㅋㅋ
-
고1때 매3 시리즈 고2때 올오카 + 마더텅 고3때 올오카 비문학 4회독 문학은...
-
엄빠 다 무교임 할머니랑 외할머니는 둘 다 교회 열심히 다녔는데 각각 돌아가시거나...
-
과외샘 찾기 꿀팁ㅊㅊ점 옯과외시장 넘 어렵개생겨서 걍 김과외로 찾을라하는디
-
“네임드의 길“
-
불금이라 다들 나가서 피방이라도 가거나해서 오르비는 잘 안하려나,,,,
-
브레턴우즈 헤겔 again let’s go
-
안좋은데인거임???? 없어졌다 생겼다하던데 근무지가 헬이거나 사장이 ㅈ같나,,,
-
일단 네이밍 간지긴 한데... ?: 대학 어디 다니세요? ??: 저 외의 다녀요...
-
"예수를 배반한 제자가 유다" 라는 사실을 아는 게 상식인지 여부로 논란이 된 적이...
-
현역? 꿈 깨시죠재수? 고작?3수 이거죠.
-
대신집에서먹음
-
드릴드릴 1
드릴드
-
생윤 책 0
시켜서 대충 보는데 좀 어려워보임 괜히 생윤했나 싶네요 비문학 윤리 어려워하는데ㅜ
-
메카니카 사둔거 일과에너지 파트 다 끝내고 다시 기출봐야게써
-
30점따리 7등급인데… 가능? 카대 가고싶음 공부 방법 좀 알려주샤ㅠㅜㅜㅡㅡㅠㅠㅠㅠ
-
공부시간도 많아지고 운동도 꾸준히 하고 잠도 제때 자고 사고도 긍정적으로 바뀌고...
-
2주 기간권 vs 50시간 가격은 동일함
-
연애/이성 관련 똥글 20
저는 군대 간 남친 기다리면서 겸사겸사 대학원 연구실 인턴으로 납치당해서 살고...
-
ㅋㅋㅋㅋㅋ
-
감사합니다
-
저는 현역 때 N수 이길 수 있겠다는 생각을 하곤 했었죠.. 18
막상 재수생으로 2개월정도 살아보고 제 기준으로 지금의 저랑 1년전의 저랑...
-
이정도면 ㅇㅁ 뒤졌단 말 나와도 합법 아니냐? 이걸 내가 쳐당하네 씨발ㅋㅋ
^{2}가 뭘의미하는지 잘 모르겠습니다.
아 제곱입니다 ;;;
9맞지 않나여.??
원래 배운데로 미분공식쓰고 하면 8나옵니다 ;;
답지에도 8로 되있구요;;
근데 h로 나눠서 h를 0으로 보내면
f'(x)=2x가 나와요
그래서 적분하면 에프엑스는 x^2+4가 나와여 ㅠ
알려주세염
그렇게 하면 f(2)=8이 나오는데.....
1,1 각각 대입하면 9가 나오는...,.,.,.,.ㅠ
그리고 미분공식쓰면 f(0)=4가 나오는데
X에 0넣고 h에2넣으면 또 f(2)는 12가 나와여 ㅎㅎ
와우 ㅋㅋ
그것까지 알아내시다니 ㅋㅋㅋ
제가 해오던대로 풀이하니깐 8이 나오네요
x에 1, h에 1을 대입해보면
f(2)=9가 .........................
도대체 왜 그런거지 ??ㄸㄸㄸㄸㄸㄸㄸㄸ
오르비 고수님들 ㅠ
댓글 수정했는데 코멘트가 달려서 날아갔네요 -_-;;
제가 찾은 결론은 함수 f(x)에서 h는 상수일뿐입니다 변수가 두개인 함수는 고등학교 범위에서 안다루죠
상수가 1이됬다 2가됬다 함부로 바뀌면 안되니깐
h를 0으로 보낼수 있는 미분공식을 활용한것 같네요
그럼 임의의실수 h란게 잘못된거아닌가염..
문제를 잘보시면 임의의(수많은) 실수(h)중에서 문제에서 주어진 식을 만족함과 동시에 미분가능해야 하니 그런게 아닐까 싶네요
그러면 h도 마음대로 0으로 보낼수 없지 않나요 ? 임의의 수가 아닌 상수로 정해지면...음...
제가 보기엔 그 h가 0이에요 h에 0을넣으면 식도 성립, 미분가능도 성립하지만
h에 0이외의 숫자를 넣게되면 미분가능하지 않게 되버리는 현상이 생기는것 같네요 조금더 자세한 설명은 다른분께서 해주셔야할듯
아니면 문제자체가 틀렸다던지 ;;;
변수가 두개인함수는 변화율에서 다루지 않나요?
아하 거기서 한번나오네요ㅋ
요즘에도 변수2개인 변화율문제가 출제되나요?
요즘에 변화율문제가 나온지 꽤 되긴했지만 기출문제에 있으니까요..
문제에서 미분가능한 함수라고...;;;
뭔가요상하넴... 왜이러지..
그러게요 요상하넴....여 ㅋㅋ
대강봐도 님이 하신거처럼하시면 항상 미분가능함수이란ㅂ보장이없는듯..
문제에서 미분가능한 함수라고...;;
이건 제생각인데 윗분들말들 종합해보면 그냥 문제집 자체가 틀린거같습니다.
h가 상수면 상수라고 주어져야지요.. h가 임의의 실수 라니요;;;
소동님 계시면 좋겠네요.
음 일단 h->0 으로보내서 미분식의 형태로 고치면 f'(x)=2x 그럼 f(x)=x^2+c 가 되는데
저기 식에다 이걸 집어넣어보셔요 { (x+h)^2 +c } - (x^c+c) = 2xh + h^2 = 2xh + 2h^2 에서 h=0 이 나와요
그럼 f(1)=1 인데 문제의 조건인 f(1)=5 랑 상충하죠. 잘못된 문제이므로 버리면 됩니다 ㅋㅋㅋㅋ
근데 제 생각엔 저 식이 오타인거같아요
원래 식이 f(x+h)-f(x)=2xh+h^2 이면 아마 문제가 없어질듯해요
h가 임의의 실수라고 했는데 h=0으로 나오는건 말이 안되거든요. ㅋㅋ
그래서 고친식을 보면 이 식에서 얻을 수 있는게 f(x)=x^2+c 밖에 없어요. 그러면 이제 f(1)=5 라는 조건을 집어넣으면
f(x)=x^2+4 라고 뙇 나오게 됩니다 아하하 제 생각일 뿐이에요 ㅋㅋㅋㅋ
아 감사합니다 이게 정답인듯 ㅎㅎ 드뎌 해결되었군요 !!
3번째 줄에 어떻게해서 f(1)=1이 되는건지 설명좀 해주셔요
이 상황을 누가 해결할 것인가....
마지막에 2h^2가 아니라 h^2가 되야겠네요
함수 f(x)인데 h문자를 x로 치는게 이상하지 않나요
1) h는 임의의 실수이므로 0으로 보낼 수 없다. (0으로 수렴하는 상태는 실수가 아니므로)
2) f(1)=5임을 활용하기 위하여 x에 1을 대입한다. (x는 임의의 실수이므로 1을 대입할 수 있다.)
f(h+1)=2h+2h^2+5 에서 h=1일때 f(2)=9가 성립한다. (h는 임의의 실수이므로 1을 대입할 수 있다.)
이렇게 풀면 오류가 없게 풀리는 듯 한데, 답이 아니네요 ㅠㅠ