집합문제 설명좀 해주세요
게시글 주소: https://orbi.kr/0003014219
1. (나)는 조건명제 아닌가요? 왜 문제에서 단순히 조건이라고 보는건가요?
2. (가) 조건이 없다고 치고 (나) 조건만 만족하는 집합 T라고 칠때요,
(나)에서 가정 부분인 'P~일 때'가 성립이 안된다면 어떻게 되나요?
예를 들어 T={4,5} 이면 (나)의 가정부분 부터 성립이 안되는데요, 그럼 이 집합 {4,5}는 (나)를 만족한다고 볼수 있나요? 아니라면 왜 아닌지 설명 부탁드립니다..
수학 고수님들의 답변 부탁드리겠습니다..
출처:자이스토리
p.s ss440님 답변감사합니다. 내공이 ㅎㄷㄷ 하시네요;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고사국 0
요즘 어느정도임
-
버기 1
오늘도 화이띵
-
크아아악 1
열난다 이럴수가
-
너무 긴 거 아니냐;;
-
이제 일어나서 봤는데 어제 인증글에 생각없이 댓글단거 죄송합니다 4
앞으로 커뮤하면서 더더욱 말조심 하겠습니다 추가적으로 메인글에 저에 대한 요약에서...
-
포스트잇같은거 안붙이면 원래 훔쳐가나요...ㅅㅂ 핫식스 원플원인거 사서 하나는...
-
ㄹㅅ 도착 0
근데 음 어제 뭔일이 있었구만 인증만 보고 바로 잤는디
-
저는 재작년에 연대 논술 대비만 했어서 물1과 물2 베이스가 비슷한 상황입니다....
-
크아아어억
-
얼버기 9
사실 잠을 안잔 상태
-
그냥 벽보고 혼자 공부하나요?
-
근데 물리하고 싶어요.. 지구는 고정이고. 아 생명 진짜 싫은데ㅡㅡ
-
나오해원안좋아하는디
-
메인글 보는데 7
어제 뭔일이 있었던거임
-
타임어택이 심한가요? 제가 문돌이 출신이라 생명 준킬러 킬러 구성 이런 것도...
-
KAI처럼 비행기 회사 가고싶어서 국민대 미래모빌리티 말고 항공대 공대 선택했는데...
-
의대 휴학함? 0
자 26수능 드가자
-
단 한개의 깃털도 남기지 말고
-
안할거긴한데
-
508이면 빵 아닌거같은데.. 498이면 부러운거고
-
.... 3
최소한 마음속에서 자존심 세우고 다녀도 어색하지 않은 곳에 올해 갔다면 어땠을까
-
modest 2
-
언젠간 웃으며 학교 다니고 웃으며 사랑하고 웃으며 꿈을 이루고 싶어요
-
모닝 하겐다즈 5
초코맛
-
얼버기 !! 0
다시 잘게요 !!
-
전망 어떰뇨
-
공부 4일차 시작.
-
얼버기 0
다들좋은아침이여
-
얼버기 0
자다가(?) 일어났어요 좋은아침이에요 !
-
얼버기 0
오티 갈 준비 해야지~
-
아님 기존의 문과침공을 유지할까요?
-
메인 뭐징 0
흐흐
-
ㅇㅂㄱ 1
메인뭐야 새르비뭔일임
-
늦버기 1
아오 쫌 왜 이러는데 ㅠ
-
독재 반수 0
ㅈㅈ하게 52323 기숙들어가서 개빡세게 하면 얼마나 오를수 잇을거같음? 반수로!...
-
얼버기 4
-
힘내라 샤미코
-
.
-
기차지나간당 4
부지런행
-
여러분 저메추 3
마라탕에 마라샹궈 레츠고
-
아 대닜었는데
-
.
-
기강 함 잡아야겠다
-
으흐흐 0
으흐흐
-
내안경이어디갔지 2
-
슬퍼 1
늙어서 너무 슬퍼
-
D-261 3
영어단어 영단어장 40단어/40단어 복습 수특 4강 모의고사 21년 9모 25번까지...
-
돈많이 드는 취미는 ㄹㅇ 쉽게 텅장됨
1. 저기서 말하는 조건이란 단순히 T가 만족해야 할 성질들을 내걸었다는 것을 나타내는 일상용어에 가깝습니다….
2. 사실 주어진 정의가 좀 이상한 게 맞긴 맞습니다. 왜냐하면 질문하신 T = {4, 5}는 조건 (나)를 만족하거든요!
수학에서 사용하는 조건문은 결론이 참이고 가정이 거짓인 경우, 오직 그 경우에만 전체 조건문이 거짓이 됩니다. 즉, 가정이 거짓인 조건문은 반드시 참입니다.
그런데 집합 T = {4, 5}의 임의의 원소 P는 A의 부분집합이 아니므로, (나)는 항상 만족됩니다.
사실 수학에서 실제로 사용하는 위상(topology)는 다음과 같이 정의됩니다:
[정의] 집합 A에 대하여, A의 부분집합들을 원소로 갖는 집합 T가 다음 세 조건을 만족하면 T를 A의 위상이라고 부른다.
(가') Ø ∈ T, A ∈ T
(나') {P(i)∈T : i∈I} 가 T의 원소들로 이루어진 임의의 모임일 때, ∪P(i) ∈ T 이다.
(다') P∈T 이고 Q∈T 이면, P∩Q ∈ T 이다.
물론 조건 (가')~(다')는, A가 유한집합이면 질문에 제시된 조건 (가), (나)와 정확하게 같아집니다.
문제는 제시된 문제에서 T의 원소들이 반드시 A의 부분집합이어야 한다는 조건이 빠져있다는 것이지요.
이 조건이 빠짐으로 해서 너무나도 많은 '잘못된' T들이 제시된 문제의 조건을 만족하게 되고, 따라서 오류가 발생합니다.