가형 수능완성 실전편 4회21번 질문입니다..
게시글 주소: https://orbi.kr/0002995508
답은 나왔거든요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재수생인데 김승리 선생님 따라가면서 tim 오늘 처음 시작했는데 일정 보니까...
-
끼잉
-
돈 벌고 올게 7
씐나게 놀려면 일을 해야지
-
장점이 뭐임
-
안녕하세요 이미 대학을 다니고 있긴한데 올해 논술을 한번 더 봐볼까해서 최저를...
-
이 문제에서 수축했을 때 ㄱ과 ㄷ의 변화는 이해가 되는데요. ㄴ이 ㄴ으로만 변화되는...
-
도표 없는 물2생2함
-
삼수기록 9일차 2
지인선n제 set2 틀린거 복습
-
무현동호회
-
션티 0
내신휴강 끝니고 현강에서 뭐하나요? 지금처럼 ebs 다뤄주시나요?
-
몇명이서 온건진 모르겠는데 지들끼리 돌아다니면서 누구 불러내고 떠들고 ㅋㅋㅋㅋㅋ
-
n제 검색하면 16
내꺼가 많이 나온다 그리고 존경하는 다른 분들 n제 검색해도 연관검색어에 내가 뜬다...
-
조은 아침 0
-
지금 생각의전개랑 생각워크북으로 좀 진하게 기출분석 하고 있는데(하루에 한지문씩)...
-
이제 곧 수능 200일 남았는데 수학 1,2 할 수 있을까요? 고1때 수상 수하는...
-
지금 집중 ㄹㅈㄷ 안댐
-
너네 뭐 놀러왔냐..!
-
리비에스 조음? 0
ㄱㅇㅇT 리비에스 비재원생한테도 파넹 머지
-
둘이 차이없음? 시발점 들었는데 뉴런 들을까 고민되누
-
양이 안 차는데 햄부거 단품 또 먹을까
-
생명과학1 교재 0
한종철 캐치로직 듣고있는데 문제수가 부족한거 같아서 변별문항만 있는 문제집 있을까요?
-
칰킨 vs 엽떡 vs 휫쨔
-
연고공이 목푠데 그냥 미적 유지할까요 아니면 확통런을 해야할까요? 미적은...
-
통과 못하면 죽어버리는 사람들 평 보면 그렇던데
-
지각해서 못 보는 줄 알았는데 다행이네
-
맞은편 앞저리에 중삐리 새끼들 속닥이고 쿵쿵대고 킬킬대고 미래가 보인다 시발...
-
물리 내신만 하고 고3 때 지1 했다가 재수하면서 물1으로 바꿨습니다. 배기범...
-
데이트하실분 3
날씨개좋아
-
지금 이렇게까지 잘하니까 불안한데
-
https://n.news.naver.com/article/001/0015313146...
-
요즘은 너무..
-
의뱃,약뱃,한의뱃,수의뱃,설뱃,연뱃,고뱃 보다 적음
-
부심 부려도 되니까 미적과탐 해주세요
-
어둠의 경로에서 구했는데 제한시간좀 알려주실 분.......
-
이정도면 3점 수준아님??? 더 어려운 27번이 많은거 같은데 십충격이네
-
[FIM] 92번 문풀(적분하기 편한 함수로 변형시키기) 0
난이도: 7/10 xg'(x)-g(x)->xg'(x)-g(x)/x^2=(g(x)/x)'
-
시대 기출문제집 7
수1, 2 시대 기출문제집 미개봉 중고로 구하고 싶은데 4권 합쳐서 어느 정도면...
-
반수 국어 공부 3
6모 86(96) 9모 100(99) 수능 91(95) 인데 뭐부터...
-
조용히 1000덕씩 보내주세요
-
1. 뭔 책,자료 쓰심 2. 외우는 방식 및 개수?
-
사탐 공부 시간 3
수학 땜에 사탐 공부할 시간이 너무 없어요ㅕ…. 어떡하조 저만 이런가요
-
본2 올라갈 때 과외돌이 수업을 그만뒀는데 과외를 대신할 학원을 알아보다 동네에...
-
ㅈㄱㄴ
-
이거 말하면 뭉댕이질 당하는데
-
오늘열품타는 끄고해야지
-
하러갈게요
-
바이 0
국어하러감
-
연금시즌 on 1
죽지를 않네
-
난 뉴런보다 한완수가 더 좋은거같은데
-
토나올것 같음 0
하 ㅠㅠ
저..왜 저는 이 문제가 교재에 없을까요?
수능완성 실전편은 미통기에만 있는거 아닌가요?
작년교재이신가..
아, 이과는 실전편이 수학2에 붙어있어요. 이건 가형 4회 21번이었네요..
답이 5번인가요??
네, 답은 5번이 맞아요
저는 벡터분해로 풀었어요.
OA벡터를 직선L 방향성분 과
직선L에 수직인 방향성분으로 분해를 해요.
OB벡터도 직선L방향성분과
직선L에 수직인 방향성분으로 분해를 해요.
이 때 점B는 점O를 중심으로 하고 반지름이 1인 원 위에 놓이죠. (물론 평면β 위에 있어요.)
그럼 OA와 OB를 내적하면
(OA벡터의 직선L 방향성분) · (OB벡터의 직선L방향성분) + (OA벡터의 직선L의 수직방향성분) · (OB벡터의 직선L의 수직방향성분) 의 값과 같아요.
그러면 사인과 코사인의 합 형태가 나오는데
삼각함수 합성하셔서 최댓값을 구하시면 되요.
저도 일단 벡터분해로 풀었는데 해설에는 그냥 두개 평면 그려놓고 교선에다가 OA하나 찍 그려놓고 밑에 수선떨궈서 풀었나요?
그냥 기하로 풀자면 OA의 종점 A에서 평면 베타에 수선의 발을 떨구면 각이 최소가 되는게 확실하므로 많이 보던 그림이 나오네요. 그림은 그냥 평면 두개가 교선에서 만나고, 한쪽 알파 한쪽 베타 잡고 OA 그려서 A에서 베타로 수선 떨어뜨리면 됩니다.
저게 점A에서 베타로 떨어뜨린게 각이 최소가 되는것은, 평면이랑 한 점에서 만나는 직선이 이루는 각의 크기의 최솟값을 구하는 문제니까 이렇게 됩니다.
무슨말인지 잘 이해가 안가신다면 OA랑 베타만 남겨두고 평면 알파를 지워보시면 왜 수직으로 떨어뜨리면 최소가 되는지 아실겁니다.
저도 비슷한 사고로 풀긴 했는데요.
전 처음에 <1 ) 직선OB에서 평면 알파(직선OA)로 수선>을 그었었거든요..
그렇게 구하니까, 답이 (루트5)/5여서 보기에없어서 (아마 각이 좀 더 컸겠죠 1) 과정이)
반대로 이번엔 <2) 직선 OA에서 평면 베타(직선OB)로 수선> 그어서 말씀해주신 과정으로해서 답을 구했꺼든요.
이 과정에서 1) B->A 수선 내릴때랑 /
2)A->B 수선 내릴때
어떨때 각이 더 작은 지는 어떤식으로 알아야되나요?
글 올렸다가 보셨을거라고 생각해서 지웠습니다. 못보셨다면... ㅡㅜ
저는 B에서 내리는 경우 자체를 생각을 할 필요가 없었습니다.
저는 내려서 타원에 등고선 그어서 풀었습니다...