재업) 181121 compact
게시글 주소: https://orbi.kr/00029468231
집합론 풀이 감상하시죠
우선 직선은 [1, infinity] 전체 구간에서 잘 정의되어 있으며, 연속입니다. 고로, 조건을 만족하는 직선들은 점들 중 e에 대해서도 특정 값을 가질 것인데, 그 값에 관계없이 직선의 기울기가 최소가 되려면 우선 (1,0)을 지나야 합니다.
g(1)의 값이 최대가 될 때 g(e)의 값에 관계없이, 우선은 g(x)의 기울기가 최소가 되기 때문입니다.
이때, g(x)=m(x-1) 이 됩니다.
m(x-1)>=ln(x)-t 가 되는데,
(ln(x)-t)/(x-1)=k(x) 라 하면
을 만족하는 m은 k(x)의 최댓값이 될 것입니다.
이때 주의할 것이, k(x)는 x>=e인 모든 실수 x와 양수 t의 범위에서만 정의된 함수라는 것입니다.
k’(x)를 계산해 보면, 1-(1/x)-ln(x)+t=0 인 경우에 극값을 가지는데, x>=e 일때만 조건을 만족함을 알 수 있습니다.
1-(1/x)-ln(x)+t의 그래프를 그려 보면, t<=1/e 일 때 k(x)는 해당 구간에서 순감소함수가 되므로 최댓값은 k(e)=(1-t)/(e-1)=h(t) 가 됩니다.(t=<1/e)
이가 아닐 경우에는 당연히 1-(1/x)-ln(x)+t=0 인 경우가 조건을 만족하고, 이때 h’(t)=-1/(x-1) 임을 계산을 통해 확인이 가능합니다.
이전에 그래프를 그려서 풀었다면, “이렇게 정의된 함수는 언제든지 구간별로 바뀔 수 있다”,
“그래프 그릴 때 잘 그려 보자“, 정도의 행동영역을 뽑아내는 것이 다일 것입니다.
제가 이정도밖에 못 뽑아 냈는데, 더 뽑아내셨다면... 멀리서나마 사죄드립니다.
하지만, 이렇게 함수의 구간을 중심적으로 해석하여 존재성을 중심으로 문제를 푼다면,
”구간 내에서 함수가 잘 정의되어 있는가“
라는 기본적인 아이디어만 가지고도 이렇게 문제를 푸는 것이 가능해집니다.
이렇게 저는, 다양한 문제를 접하고, 시간을 초과하고, 힘들 때마다 그 문제의 다양한 풀이를 생각하며 그로부터 생각할 수 있는 함수론의 가장 본질적인 것들에게서 아이디어를 얻을 방법을 생각했고, 그를 통해
구체적인 행동영역이 아닌, 추상적인 ”지론“ 으로부터 거의 모든 새로운 발상들을 해 낼 방법을 찾게 되었습니다.
다음에는 제 자작문제와 사용이 허락된 사설 문제를 통해서
이것의 힘과 구체적인 제 지론이 무엇인지를 알아보도록 하겠습니다.
읽어 주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내일 고백합니다
-
사촌 형이 지금 본과 4학년인데 의대 생활 힘드냐고 물어보니까 물어보니까 사람마다...
-
언제쯤 해요?
-
메가 내신 환급 0
1학기 내신 2학기 내신 기간내에 못쳤으면 절대 안되나...?
-
하루에 샤워 2번 하면 됨
-
시간참빠르다
-
인증을 뒤지게 많이 함-> ㅈㅅ이제절대인증안함 공부글만 씁니다 ->ㅅㅂ비갤에 누가...
-
너무 졸림 1
너졸 너졸이라서 집 가서 잠 너졸집잠
-
할게없다
-
오르비에서 그 사람들 보이면 프로필 누르고 멍~ 하고 보게 됨
-
재수 때 연애 1
하면 안되겠지?.. 아직 사귀진 않는데 만약 사귀다가 중간에 헤어지면 멘탈 바사삭일듯
-
진짜 수고했다 0
무승부 ㅅㅅ
-
후쿠시마 선동 이태원참사 선동 탄핵 선동 국민들 진보진영으로 끌어오기 등등 지령...
-
2달 동안 해주셨는데, 지금까지 과외 선생님이 생일선물이랑 목표 대해 굿즈...
-
D-260 1
.
-
못봄 그래서 옯찐따가 됬나
-
의미파악을 잘 하면 핑크색 영역 넓이가 분자 절반임 사다리꼴 넓이 공식에서 1/2...
-
들어오긴 개쉬운데 나가기가 겁나힘듬 그래서 안나갈거야
-
안녕하세요 1
-
이 개같은 몸뚱아리 이끌고 언제 가냐
-
사회 지리학의 스케일 개념 - 수특 독서 적용편 사회·문화 09 0
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 오늘은...
-
자 꾸 5
아찔한이느낌
-
으하하
-
일어남요 3
-
어제 9시에 자서 지금 일남;;;;
-
초고속으로 마시다가 나갈때쯤 다행히 화장실가서 변기에 토하긴 함 아 죽을거같네
-
수2 자작문제 0
-
화이팅
-
스블 0
작년 모의고사 전부 높4~낮3인데 스블 이렇게 머리 깨지면서 들어도 되나요?...
-
모닝 하겐다즈 5
후 김밥 사서 스카
-
기상 1
아기 힘듦
-
얼리벌드~ 2
-
운동 0
새벽 오뿌이들 사랑해
-
김밥 추천점뇨 3
진지함.
-
얼버기 2
모닝~
-
부경인아는 1
어느 라인이랑 겹침? 국숭세단? 광명상가? 친구중 한명은 국민대랑 인하대 같은과...
-
얼버기 2
-
힘내라 샤미코
-
난 왜 안돼
-
난 누구지 2
여긴 어디
-
이제 자야겠군 3
성찰을 많이하게되는 하루네요
-
그냥 안들었어요 수강신청에 자신이 없었어서
-
그나저나 100팔로우 한명남았는데 맞팔하실분 있나요
-
기차지나간당 13
부지런행
-
대강의 정시, 수시 컷 아시는 분 있으시면 (전북권) 쪽지로 보내주시면 너무나 감사합니다 :)
-
깨있으신오르비언들있나요 24
댓글고고
-
느어어어엉 0
휴르르르르르르르
-
자랑스럽다
-
오르비 재밌네요 11
오르비 때문에 2시에 자야되는데 4시에 자네요 안녕히 주무세요
-
구급차 3대 꼴아박아도 못잡는 종건때려잡기부터 봐야하는데
섹시하다!!!!!!!
포xx에서 보고 너무 좋았습니다.. 고마워ㅓㅛ욥!