함수의 극대 극소 유도과정 중 궁금한 것이 생겼습니다.ㅠ
게시글 주소: https://orbi.kr/0002902029
문과 고2인데요... 수학 양민이라 그런지 좀 이해안되는게 생겼습니다.
극대와 극소 중 미분가능한 함수 f(x)가 x=a에서 극값을 가지면, f`(a)= 0 이다. 이건 알겠는데 이러한 정리를 유도하는 과정 중 제가 보는 2가지 책의 서술에 약간의 차이가 있습니다.
두 책다 함수의 극한의 대소관계를 이용하여 유도하는데(정확히 말하자면 도함수의 부호로..) 교과서 같은 경우 f(a)가 극댓값이면 x=a의 충분히 가까운 모든 x에대하여 f(x)<f(a)이다. 라 하는데
숨마쿰라우데 같은 경우 f(x)가 x=a에서 극댓값을 가진다고 가정하면 x=a 근방의 t<a인 t에대하여 f(a)>f(t)가 성립한다고 합니다.(등호 들어갑니다; 교과서는 등호는 안들어가고요.. 등호를 수식으로 쓰는법을 몰라서)
정리하자면 f(x)가 x=a에서 극댓값을 가질 때, x=a 근방의 t에대하여 f(a)와 f(t)사이의 대소관계에 대하여 등호가 성립할 수 있나요.. 전 교과서 서술이 맞는 것 같은데... 어차피 극한으로 보내면 등호 성립되서 유도되긴 하지만 궁금합니다.
가르쳐주세요 ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
맛있겠노
-
수1 수2 미적 하루에 3개 하루치씩 다 풀만함?
-
정치적, 제도적 이슈와 관련된 메타가 있을때마다 추가됨
-
아침부터 택배기사한테 전화오고 전화 안 받으면 반송한다고 난리나서 확인해봤는데...
-
9모끝나고랑 비겨하면 집중력이 빨리 떨어지는거같은데 너무 많이남아서 그런가….
-
수학 고민시간 1
수분감 하는 중인데요 한 문제 풀 때 고민 얼마나 하시나요? 이제 처음 푸는 거에요
-
산책하다 3
준네 멀리왔음 여기 어디여;
-
흠 3
흠
-
정말이지 무시무시한 우연의 일치가 아닐수없습니다..
-
아따 날씨좋다 2
ㄷㄷ 이쁜이 발견
-
님들은 가족 아닌 여자애기 옷 갈아 입히는 거 가능함? 7
그럴 일은 보통 없겠지만 가족 아니고 부모님 지인 분의 애기 같이 걍 남인 3~4살...
-
운동하던 친구가 갑자기 대학가겠다며 공부를 하려고 하는데 전부 3등급이면 어디...
-
국어 유기 4
3모 국어 원점수 84인데요 수학이 4가 떠서 4월 한달동안 수학만 하려고 하는데...
-
개념 다 돌렸고 문제가 적은 과목이라길래 학평, 평가원 다 뽑아서 풀려는데 법과...
-
미친짓?
-
고속기준 시립대전전컴이 찐초고 중앙대 공대는 노랑인데 인문이면 고대 가정교육과 연초...
-
프리뷰 테스트 보고 모의고사 형태 시험지에다가 필기할 거 필기하는 거임? 큐이디 본...
-
뭐 때문인거지 트럼프로인한 전세계적 현상인가
-
오늘 공부한다리 2
삘 옴
-
어제 현금 많이 달러화 해뒀었는데.. 달콤하다
-
컴공보다는 나으려나..
-
필요하긴한데 하는게나으려나
-
수특독서 심리철학의 물리주의적 이론들에서 기능주의? 0
심리철학의 물리주의적 이론들중 기능주의를 쉽게 설명해주실수 있는 분 계실까요?...
-
가능할까요 4
학교와서 1시간 40분동안 오르비만 했는데 지금부터 공부하면 서울대 가능할까요
-
차이점은,,, 진짜 금을 연성해낸다는 것..
-
나
-
씨팔........................
-
어느정도 유베인 학생이랑 노베에 가까운 학생을 동시에, 아무 상처 안 주고...
-
롤하고 학교에서 수업듣고 정시 공부 언제 하실거에여
-
할거 추천 좀 25
롤 제외
-
돌려서 거절하는 상황이라던가 그런거...
-
이번학기에 군대가려고 휴학중인데 계속 떨어져서 9월에 공군 가게생김… 한 9달을...
-
평가원 기출에 기반한 진짜 농어촌(자연 친화)
-
맨날 3 4시간 자면 깨니까 피곤해 죽겠음 누가 나좀 한 10시간씩 자게 해줘
-
난 오만하다 9
그러니 오만덕을 내놔
-
체감상 한 수요일 목요일쯤인데
-
정족의 발전 인정좀
-
키스타트 끝나고 3회독 해서 다음 커리는 키스로직이 나을까요??
-
출석이 고민이다. 직접호명 소수수업은 어떻게 할까
-
오늘 다 풀기는 솔직히 힘들것같고... 수면패턴 바꿀겸 80문제만 더풀어야지...
-
그날 수업만 3갠데 차라리 일주일 연기 해주면 안될까...
-
각자 사정이 다 다르고 본인이 보는 시야가 100%가 아닌데
-
어케 산출하는거임? 나머지 과목은 추정치로 산출? 누백 사기 아님? 알려주세
-
시중N제를 사는거보다 강대나 시대 자료 작년꺼 당근으로 구해서 매일 푸는게 낫나용?...
-
벡터 넘겨서 계수합 1로 만든다음에 내분외분 파악하는 부분 듣고 있는데 첫번째 사진...
-
나는 0
한평생 지방에서 월 400,500받고 앵간히 살려고 태어난게 아니야 언젠간 저...
-
종이책없으면 공부못하겠는데? 날속인거니? 있어도안하긴함 우우
-
기초 개념은 다 끝낸 상태이고 실전 개념을 하고 싶은데 고민입니다. 제목과 같이...
수학적인 엄밀한 정의는 적으신 내용이 맞습니다. 즉,
[정의] 어떤 δ > 0 이 존재하여, (a-δ, a+δ) 위에서 f(x) ≤ f(a) 가 성립하면 x = a 를 함수 f의 극대점이라고 하고 f(a)를 함수 f의 극대값이라고 부릅니다.
극소값 역시 마찬가지로 정의됩니다. 그리고 더 나아가서 일반적으로 수학 분야에서는 증가함수나 감소함수를 정의할 때에도 역시 부등호에 등호가 들어갑니다.
(그래서 등호가 빠지는 부등호로 정의되는 증감의 경우 순증가, 순감소 등의 용어를 사용합니다.)
고교과정에서 어떤 식으로 이런 개념을 정의하는지 제가 잘 기억하고 있지는 못하지만, 설사 다르게 정의하고 있다고 해도 그 정의가 고교과정 이외에서 쓰이는 것을 저는 본 적이 없네요. -_-;;
사실 이론 분야에서 만나는 수많은 함수들은 너무나도 기괴한 행동을 보이기 때문에, 증가상태에서 감소상태로 바뀐다는 식의 정의로는 다룰 수 있는 함수가 너무 부족합니다.
예를 들어서 그 어떤 점에서도 증가상태나 감소상태가 아니고 그 어떤 점에서도 미분 불가능하지만 모든 점에서 연속인 함수가 존재합니다.
이러한 함수의 예는 비단 순수수학에서뿐만 아니라 경제학에서의 주가 변동 모델이나 물리학 등에서의 브라운 운동의 수학적 모델 등에서도 찾아볼 수 있습니다.
때문에 이론에서는 가능한한 우리가 상상하는 개념을 수학적으로 다룰 수 있게 다듬으면서도 동시에 가능하면 많은 경우를 다룰 수 있도록 최대한 약한 정의를 사용하려고 합니다. 그래서 등호가 들어가는 것이지요.
사실 '상수함수는 모든 점이 극대점이고 극소점이다' 와 같은 몇몇 극단적인 케이스만 납득하고 넘어간다면, 주어진 정의는 등호가 빠진 정의외 크게 다를 바가 없기도 합니다만... -ㅅ-;;
저도 예전에 똑같은 궁금증 때문에 질문 했었는데,
그에 대한 sos440님의 답변입니다. 참조하시길
제가 잘못 알고있었나 보군요;; 앞으로 저는 답변을 달지 말아야겠네요 ㅠㅠ
감사합니다.