[펌] 고교수학 공부법 (단권화 노트법)
게시글 주소: https://orbi.kr/0002874806
고교 수학 공부법(단권화 노트법).pdf
고교 수학 공부법(단권화 노트법)
작성 imahun@naver.com 신상훈
이 글은 대부분의 학생이 대학 때 알게 되는 단권화 공부법을 어떻게 하면 고교 때부터 적용시켜 공부의 효율을 높일 수 있는가에 대해 살펴 본 것입니다.
차례 1) 중학 수학 공부와 고교 수학 공부의 차이 2) 내신 공부와 수능 공부 3) 수학 교재 분석 4) 실력 정석 공부 문제 5) 단권화 공부법 6) 단권화와 학원 공부의 조화
1) 중학 수학 공부와 고교 수학 공부의 차이
중학 수학 공부와 고교 수학 공부의 가장 큰 차이는 문제의 난이도보다는 양에 있습니다. 저는 공대를 나와 경제대학원을 다녀 문과 이과 공부를 경험했고, 공업수학과 경제수학을 흥미롭게 공부했던 사람인데 나이들어 중학 수학과 고교 수학을 다시 공부해 보니 둘 다 어렵기는 마찬가지였습니다. 중학 문제든 고교 문제든 어차피 생전 처음보는 것처럼 실마리가 생각나지 않으며 계산의 실수가 많았습니다. 물론 중학 문제는 닥치는 대로 풀거나 한 두 가지 힌트로 바로 암산으로 답을 구하는 문제도 많지만, 어차피 그 힌트도 외우고 몸에 익혀야 하는 것이어서 공부하기 힘든 것은 마찬가지였습니다.
그러면 왜 중학교 때는 수학을 잘 하다가도 고교에서는 포기하는 사람이 늘어날까요? 문제의 난이도나 생소함보다는 양이 확 늘어나기 때문이며 이는 학습 내용 자체도 많아짐과 동시에 시험의 성격이 달라지기 때문입니다. 고교 공부의 실질적 최종 목표는 대입 수능 시험인데 이것은 고교 전범위(1학년 과정도 사실상 포함됨)를 대상으로 하기 때문에 대량의 내용을 빠르게 공부하는 습관을 길러야 합니다. 망각 효과 때문에 동일한 수준의 내용이라도 시험 범위가 2배가 되면 공부 시간은 3-4배로 늘어나야 합니다. 수능같은 전 범위 시험을 대비하려면 출제 범위가 넓기 때문에 단권화를 통한 효율적 공부에 주력하는 데, 중학교에서 고등학교로 넘어오면서 이런 공부법을 익히지 못 한 학생들은 예전처럼 닥치는 대로 문제를 풀면서 공부합니다. 대부분의 학생이 문제를 풀고 까먹고, 어려운 문제 만나면 포기하고, 나아가 수리 가형에서 나형으로 바꾸는 지경까지 이르게 됩니다.
실제로 고교 수학 공부량을 살펴보면,꼭 풀라고 하는 수학 책자만 해도 교과서까지 약 40권이 됩니다. 교과서와 익힘책 10권 정도, 학교별 문제집 6권, 보편적 개념서 6권, 보편적 문제집 6권, 수능 기출문제집 6권, EBS 12권 정도입니다. 여기서 교과서 익힘책 학교별 문제집을 생략해도 30권 정도가 남습니다. 수능에 나오는 것만 본다고 해도 10권은 가볍게 넘어갑니다. 이것을 고교 기간 동안 3번 이상 풀 수 있을까요? 웬만한 시험(공무원 시험, 주요 자격 시험)을 보신 분들은 알겠지만 이렇게 필수로 봐야 할 교재가 많은 경우에는 그를 얼마나 압축해서 공부하도록 준비해 놓느냐가 시험의 성패를 좌우하는데 학생들은 이런 점을 거의 모르고 있습니다. 그러니 실력 정석을 몇 번을 봐야 하나, 자이 스토리 책을 몽땅 3번 이상 풀겠다는 식의 황당한 공부법이 나오게 됩니다.
학부모님들 중에서는 '우리 때에는 이런 식이 아닌 것 같았는데...?'라고 궁금해하는 분이 있을 겁니다. 간단히 답해 보겠습니다.
우선 과거 교육체제에서는 중학교 3학년 때 전범위 시험이 있었고, 고교에 들어가기 전에 학생들이 중학 공부를 정리할 기회는 물론 전범위 시험에 대한 개념을 알려주었고 고교생이 된 뒤부터는 요약 정리에 노력하게 되었습니다 (당시 유행하던 문제집이 바로 5년간 기출문제 였습니다) 현재 학력 평가 개념의 시험은 있지만 목숨 걸고 하는 입시 개념의 전범위 시험은 중학에서는 사라졌습니다.
두 번째 차이점은 수학 교재의 변화입니다. 학력고사를 봤던 분들은 정석이나 해법 교재를 학력고사 때까지 활용했고, 종로 대성 등의 입시학원 교재를 부가적으로 이용했던 것을 기억할 것입니다. 지금은 정석 등은 개념서일 뿐이고 별도로 문제집(쎈 등), 수능 기출문제집(자이스토리 등), 수능 공식 교재(EBS교재)를 별도로 봐야 합니다. 3배가 더 추가된 것입니다.
사실 수능에서의 수학 과목 공부량은 고등고시 한 과목의 공부량보다 많습니다. 필수적으로 봐야 할 책자의 쪽수가 6천쪽이 넘는 황당한 양입니다(답지 포함). 이런 경우 시간 효율화 공부법이 핵심인데 그를 위해 단권화를 해야 합니다. 단권화는 보통 암기과목(사탐, 과탐)에나 적용한다고 생각하며 수학에서는 오답노트(좀 더 나아간 사람은 개념노트 포함)로 충분하다고 생각하는 데, 위의 공부 범위라면 반드시 수학에서도 핵심 단권화를 해야만 합니다.
중학교 때처럼 여러 문제집(개념원리, 쎈, 최상위, 에이급 수학 등)을 닥치는 대로 풀고 (특히 책자에 갈겨 쓰고 한 번 보고 버리는 방식) 학교 시험 경시 대회 등에서 시험이 끝나면 공부했던 책은 쓰레기통에 보내버리던 방식으로는 고교 공부에서 성공할 수 없습니다.
그 외에 고교 수학 공부가 힘든 원인의 하나는 학습 난이도에 비해 설명이 부족하다는 생각도 드는데 이는 뒤에서 자세히 설명하겠습니다
많은 학생들이 고교에 들어와서 수학 공부에 좌절하는 이유는 공부 자체의 양이 많고, 전범위 시험에 따른 반복 학습 요구량이 급증하기 때문인데, 이를 단순히 '개념 이해가 부족해서' '기초가 부족해서'라는 식으로 생각한다면 실패를 반복하고, 기껏해야 우연한 성공이나 바라게 되는 것입니다.
.
또 사회, 과학 과목에서 적용하던 단권화 방식을 그대로 수학과목 단권화에 적용하면 되겠구나로 단순한 생각은 접으십시오. 3개 고등고시를 합격하여 공부와 암기의 천재임을 증명한 고승덕 변호사도 “고시 공부 때 단권화가 매우 지루한 작업이었다”는 글을 남겼습니다. 단권화는 완성해 놓으면 엄청난 위력을 발휘하지만 거기에 도달하기까지의 지루함, 나만 이것을 하는 것인가 또는 나만 진도가 느린 것인가라는 불안감 등 여러 방해 요인이 있습니다. 고교 수학 공부의 시간 효율화를 위해서는 어떤 단권화를 선택해야 하는가라는 것은 많이 고민해봐야 할 사항입니다. 또 교재의 선택과 학습 순서도 중요할 것입니다. 이런 부분에 대해서 계속 글을 써 보겠습니다.
2) 내신 공부와 수능 공부
중학생 시절의 공부는 순수 내신 공부 그것도 중간이나 기말고사 단위의 시험뿐입니다. 몇 가지 학력 측정 고사가 있지만 시험 부담이 없는 것이라 의미는 적습니다. 요즘 학생들은 과거에 비해 선행 수업이 일반화되어 있어 초교생이 실력 정석을 보는 일도 자주 보이지만 반대로 고교생의 경우 수포자(수학 포기자)가 늘어나는 것도 현실입니다. 중학교 때 시험 부담없이 공부하기 때문에 학생들의 실력 편차가 많아 보이며, 고교에 들어와서는 전체적으로 하향 평준화되는 현상이 나타납니다.
근본적으로 지금 초중학생들은 80-90년대보다 수학 공부량이 적습니다. 전체 공부량이 줄어든 것이 아니라 다른 과목 특히 영어의 비중이 늘었고, 수학은 일부만 공부해도 대학을 갈 수 있다는 풍조가 유행했던 적이 있기 때문입니다. 현재도 대입 수능에서 수학은 가형, 나형으로 수준별 시험이 있는데 다른 과목은 수준별 시험 없이 수학만 수준별 시험을 도입하니 당연히 쉬운 유형으로만 사람들이 몰리는 현상이 나타났습니다. 이 때문에 많은 자연계열 학생이 수리 나형을 택하는 엉뚱한 현상이 나타났습니다.
이처럼 제도적 변화가 필수 수학 공부량을 줄이는 쪽으로 가다가 지난 몇 년간 반대로 수학 공부를 늘리는 쪽으로 변하였습니다. 이명박 대통령 시절에 영어 강화가 많이 주장되었지만 정작 영어는 토익과 토플 등 주요 영어 시험 응시자가 줄어들 정도가 되었습니다. 1인당 응시횟수도 줄어드는 변화가 있다고 합니다. 이는 토익 토플에 대한 대체시험도 생기고 비싼 사교육 억제를 위해 고교, 대학 입시에서 내신 외의 영어 성적은 제외하는 추세이며, 외국 거주 학생 등 영어 특기자는 한국 대학보다 SAT를 통해 미국 대학으로 가는 경향이 생겼기 때문이라고 생각합니다. 도리어 강화되고 있는 것은 수학입니다.
흥미로운 것은 현재의 수학 교과는 과거 학력고사 시절의 수학 교과와 별로 차이가 없는 데(정확히는 더 줄었습니다. 복소변환이 통채로 빠졌습니다) 책은 더 많아졌다는 것입니다. 과거의 수1(문과 2-3학년 수학), 수2(이과 2-3학년 수학)의 한 권으로 배우던 수학책이 이제는 수1, 수2, 적분과 통계, 기하와 벡터의 4개 과목으로 바뀌었습니다(자연계 기준) 그냥 내용을 나눠 놓은 것으로 생각하시는 분도 있겠지만 교육 공급자(교사, 학원, 문제집 출판사) 입장에서는 분철된 과목 하나도 충분한 분량을 가진 책자가 되도록 해야 하기 때문에 내용이 늘어나는 경향이 생깁니다. 개별 교과서도 교과서에 익힘책이 추가되면서 풀어야 할 문제는 두 배가 되었습니다.
이처럼 풀어야 할 문제가 늘어난 것도 고민인데 추가로, 대입 시험과 내신 공부를 위한 교재가 분리되는 추세가 강화되는 것이 더 큰 문제입니다. 70년대 본고사가 있던 시절은 당연히 내신 교과와 대입 시험이 분리되었지만 80년대에 그를 통합하는 것이 성공했고 그 결과 학력고사 시절에는 가난한 사람의 아들 등이 전국 1등을 했다는 기사가 나오는 것이 가능했습니다. 그런데 90년대 수능 시험(일본식 시험에서 미국식 시험으로 전환한 것)이 나오면서 다시 내신 공부와 대입 공부가 분리되는 경향이 생겼습니다. 그나마 2000년대 초반에는 '하나만 잘해도 대학 갈 수 있다'는 방식이어서 수학 공부의 부담이 줄었지만 이제는 교과 내용이 과거로 복귀하여 공부 부담이 더 늘어난 것입니다. 또 2000년대에 있었던 이산 수학(당시 IT발전을 위해 가르쳤던 것)이 현재 교과에서는 사라졌는데 그 잔재는 문제집에 일부 남아있습니다. (수열과 정수 부문에 남게 되었고, 공부해 보신 분들은 아시겠지만 이 부분에 짜증나는 응용문제가 많습니다)
개인적인 생각으로는 수학 과목은 내신과 수능에서의 문제가 비슷해도 좋다고 생각합니다. 고교에서 어떤식으로 배워오던 대략 교과서의 공식만 이해할 줄 알면 경제수학, 공업수학, 수리물리, 금융수학 등을 배우는 데 전혀 문제가 없기 때문입니다(한국 고교 수학의 수준이 높기 때문입니다). 그러니 공식의 이해 여부를 묻고 간단한 계산을 하는 정도의 문제만 내도 수학 시험으로는 충분한 데, 괜히 응용력 측정, 사고력 측정을 강조하면서 소위말하는 꼬아놓은 문제가 많아졌습니다. 이렇게 된 원인 중에는 2000년대 초반의 수학 과목이 축소되었을 때 축소된 범위 내에서 문제를 내다보니 새로운 개념을 가르치는 것이 아니라 각종 내용을 꼬아놓은(대표적인 것이 도형을 활용하는 것) 방식의 문제가 많이 생겼고, 이런 출제 경향이 지금도 유지된다는 생각이 듭니다. 수학 공부량은 원래대로 복귀했는데 이런 꼬아놓은 방식으로 출제하는 것이 계속 늘어나게 되니 내신 공부와 수능 공부는 계속 분리가 되어갑니다. (그런 잡다한 꼬아놓은 문제를 가르치는 것보다 차라리 중적분을 가르치고, 복소해석과 벡터 미적분을 가르치는 것이 더 낫다고 생각합니다)
나아가 수능을 위한 사실상 국가 공인 교재인 EBS교재가 교과서를 대신하게 되면서 학교시험에서는 교과서를, 대입에서는 EBS교재를 보는 것이 보편화되었습니다. 이 또한 필수 공부량을 늘리게 되었습니다. 또 EBS교재는 매년 바뀐다는 특징이 있어 고3이 되어서야 본격적으로 준비하게 된다는 시간적 급박성이 있습니다.
그리고 수능처럼 하루 종일 보는 시험 정도가 되면 시험장에서 항상 시간에 쫓기게 됩니다. 계산 실수가 없어야 하므로 문제를 풀기만 하면 되는 것이 아니라 1) 문제 풀기 2) 확인(대입해 답을 맞춰 보거나 2번 풀어 계산 확인)까지 해야 하므로 시간이 더 필요합니다. 이런 이유로 수능 시험에서는 처음 보는 문제가 나오면 사실상 틀리게 됩니다. 또 이미 풀었던 문제라도 너무 계산 과정이 길면 틀릴 가능성이 높은 것이어 포기하는 것이 더 낫게 됩니다(그러니 문제집을 풀 때에도 풀이가 10줄을 넘어가는 문제는 애써서 익힐 필요가 없습니다. 어차피 시험장에서는 맞기 어려운 문제입니다). 중고교 학교내 시험처럼 이리 저리 응용력을 발휘하여 문제를 고심해서 푸는 것은 불가능합니다. 즉 풀어봤다는 느낌이 없는 문제는 틀린 것으로 보아야 합니다(고등학교에 들어와 이 사실을 아는 데 1-2년이 걸리는 사람도 있습니다. 경시대회 등을 준비했던 학생 중에는 초교 때 이런 시험 문제 특성을 알아차리기도 했습니다). 수능 시험 직전에는 그동안 풀어 봤던 문제를 전부 훑어보아 시험장에서 풀어 봤던 기억이 나도록 해야 합니다. 그동안 풀어봤던 문제를 체계적으로 단시간에 훑어볼 준비가 되지 않은 사람은 어렴풋한 기억에 의지해 운을 믿고 문제를 푸는 것입니다.
결론적으로 수능 공부는 내신 공부에 비해 많은 범위를 짧은 시간에 공부해야 한다는 특징이 있습니다. 시험범위가 늘어날수록 공부소요량이 기하급수적으로 늘어나고 과거 교육 정책으로 인해 수능 공부가 내신 공부와 동떨어지게 되면서 더욱 공부 소요량이 늘어났고, 현재는 EBS교재라는 수능 공식 교과서가 별도로 생겨 더 공부소요량이 늘어났습니다.
이런 수능 시험에 대해 중학교 시절의 공부법(대개 고등학교 내신 공부 때도 비슷하게 공부합니다)을 적용하면 문제가 커집니다. 중학교 때 수학 공부는 책의 모든 문제를 책에다 갈겨쓰며 풀고, 한 번 본 책은 다시 보지 않는 식의 방법입니다. 대신 초 중 고급 교재를 차례로 풀어 대략 3번 정도 풀고서 시험을 봤었기 때문에 어느 정도 점수는 나옵니다. 이 방법을 고교에서 쓰면, 특히 수능 때까지 쓰게 되면 1) 책의 문제가 매우 어려워(특히 연습문제) 혼자서는 한 권을 보기도 힘들다, 2) 봐야 할 책자가 한 권이 아니라 여러 권이다, 3) 앞 부분을 공부하고 뒤 부분으로 가면 벌써 다 까먹게 된다는 등의 문제가 생깁니다.
이에 대한 해법은 대학교 때의 공부법(고시 공부법)을 적용하는 것입니다. 가능하면 단권화(한 권에 정리)하고 그를 3번 이상 반복해서 보는 것입니다. 개념서와 내신문제집, 수능 기출문제, EBS교재 등에 대해 단원별로 핵심 노트(공식 유도와 대표 유형 문제의 의의와 풀이법)와 오답 노트를 한 권으로 만드는 것입니다. 문제의 해법도 여러 책에서 취합해 다양한 풀이를 적어둡니다(한 문제에 대해 여러 풀이법이 있으면 다 적어두고 그 중 시간 효율성이 가장 좋은 것을 표시해 두어야 함)
사탐, 과탐에서 보듯이 단권화는 해 두면 항상 유용하다는 것이 입증되어 있으나 그를 실천하기가 매우 힘듭니다. 그 원인에는 학습 범위가 넓고 필수 교재가 늘었다는 것 외에 공부법 자체에도 문제가 있습니다.
80-90년대까지만 해도 학생들은 한 두권의 정통 교재를 사서 그를 3번 이상 반복해 풀고 학원 등의 도움없이 스스로 공부하는 방식을 택했기에 고교 시작 때부터 은연 중에 단권화 공부법을 익히게 됩니다. 또 중3 때 고교 진학시험을 보면서 전 범위 시험에 대한 공부 요령도 익혔습니다. 현재의 공부 습관은 반대입니다.
현재는 초교부터 학원 교육이 성행하면서 학원식의 보여주기형 공부법이 늘어나게 되었습니다. 학생에게 공부를 확실히 시키는 쉬운 방법은 문제를 풀게 하는 것입니다. 또 학부모님은 많은 문제가 풀어져 있을수록 공부를 많이 했다고 생각합니다. 그러다 보니 동일 과정에 대해 3권-4권(선행 / 본진도교재 / 상급교재(심화,경시 등) / 학교시험기출 등)을 공책이 아닌 책의 빈 칸에 마구 풀기만 합니다. 풀 때도 답만 구하는 과정을 생각하고, 문제 자체의 의의(문제 구분과 유형)는 생각하지 못 하여 흩어진 여러 문제를 어떻게 단일 해법으로 통일화하는지도 알지 못 하게 됩니다. 또 책에 엉망진창으로 써 놓은 풀이가 적혀있어, 진도를 되풀이해 공부할 때마다 새로운 책을 사야 하고, 자신이 풀었던 방식의 기록이 남아 있지 않아 매번 새로 푸는 기분으로 풀거나 책의 잘 이해 안 되는 해설을 보고 풀어야 합니다. 이런 식의 공부가 심지어 고교 때까지도 유지되기도 합니다. 학원에서 주는 문제지나 새로운 책자를 계속 푸는 방식이 유지되는 것입니다. 이 공부법이 반드시 실패하거나 성공하는 것은 아니지만 수능 공부의 특성에 비추어 볼 때 시간 효율상 매우 불리한 것입니다. 또 학원이 없다면 그렇게 많은 책자를 공부할 방법도 없기 때문에 학원 의존적 공부가 되고 시간과 비용이 증가하게 됩니다.
고교 공부의 핵심은 수능 공부에 맞게 단권화된 효율적 공부를 적용해야 한다는 것입니다. 이의 구체적 실행을 위해서는 책자 분석과 공부 가능 시간 분석 및 진도표를 만들어야 합니다. 가장 중요한 것은 사실상 시험에서 내가 풀 수 있는 범위(풀어봤던 문제 범위)를 정하는 것이며, 이는 기출 문제 분석과 교재 분석에 의해 결정됩니다.
3) 수학 교재 분석
먼저 글에 들어가기 전에 제 생각으로는 고교 수학 공부를 어렵게 만든 중요한 원인 중의 하나가 교재에 있다고 생각하기 때문에 아래에 비판적인 내용이 많음을 미리 말씀드립니다. 그렇다고 해서 제가 현재의 수학교재보다 더 좋은 책자를 만들 능력은 없습니다. 저는 다만 각 책자의 장단점을 분석해 필요한 것만을 추려 맞춤형 단권화 책자를 만드는 것을 목표로 하여 글을 쓰겠습니다.
앞에서 말했듯이 고교 수학 교재는 크게 4가지이며 추가로 학교 선택 문제집이 있습니다.
1) 개념서(이론서): 공식 유도가 나와 있고, 예제와 연습문제가 나와 있는 것(개념원리, 정석, 바이블 등),
2) 내신 문제집: 공식 요약만 쓰여 있고 유도는 없으며 문제수가 1000제를 넘는 것 들(쎈 등). 개념서를 본 뒤에 문제집을 푸는 경우가 많음.
3) 수능 기출 문제집: 수능 기출, 교육과정평가원 모의고사 기출, 교육청 모의고사 기출 문제 등을 연도별, 단원별 등으로 수록한 것. 대표적인 것이 단원별로 수록된 자이스토리임
4) EBS교재: 수능 특강(기초 수준), 수능 완성(중급 수준) 등입니다.
5) 학교 선택 문제집이란 자기 학교 교과서를 만든 출판사의 익힘책과 내신 관련 문제집을 의미합니다. 이것도 학교 시험 대비를 위해서는 봐야 합니다.
각각이 모두 필수이기 때문에 각 부문마다 하나 이상을 선택해야 합니다. 교재 선택시 가장 기본적인 원칙은 '남이 보는 대표적인 것은 나도 봐야 한다'는 것입니다. 이는 상대평가 방식의 시험 과목에는 가장 중요하게 적용되는 것입니다. 상대평가는 등수제 평가 방식인데, 여기서는 '나는 최소한 남이 대부분 맞은 것은 나도 맞을 수 있도록 공부한다'는 공부법이 기본입니다. 따라서 남들이 대표적으로 보는 교재는 나도 봐야 합니다. 실제로 남들이 많이 보는 교재가 체계가 있고 내용도 잘 된 경우가 많습니다.
어떤 문제집이든 문제 배열 순서가 단원별로 배열된 것이어야 단권화 작업에 도움이 됩니다. 시간별 배열(수능 기출 문제집의 연도별 기출문제), 난이도별 배열(상,중,하로 나눠진 문제집)의 문제집은 서로 연결되는 문제를 각각의 책에서 찾기가 어려워 단권화가 어렵습니다. 이런 이유로 수능 기출 문제집은 단원별로 배열된 자이스토리를 많이 봅니다.
EBS교재의 경우 고3학년 3월부터 방송되는 수능특강은 기초 과정 교재라고 보아 건너뛰고 (또는 연습문제 정도만 풀고), 수능 완성과 고득점 N제만 보는 것을 권하기도 합니다. 기초 과정도 공부해야 한다면 수능특강부터 공부합니다.
내신 문제집에서는 쎈이 많이 추천되며, 어차피 자기 교과서 출판사의 내신 문제집을 한 권 더 봐야 하므로 이 두 권만으로도 충분하다고 생각합니다.
가장 선택의 갈등이 생기는 것은 개념서인데 정석 실력편을 추천하는 사람이 많고(기초가 약하면 개념원리를 먼저 보고 정석을 보라는 말도 함), 바이블보는 사람도 많습니다.
제 개인적인 생각에는 내신 공부가 수능 공부가 분리되는 것은 좋지 않으므로 가능한 개념서(+내신 문제집)에 수능기출문제와 EBS교재의 핵심 및 고난도 문제를 옮겨 정리해서 단권화하면 좋겠다고 생각합니다. 그러기 위해서는 개념서를 잘 선택해야 하며, 위의 문제집 들에서 어떤 문제를 버리고 어떤 것을 살릴 것인가에 대해 확실한 기준을 가져야 합니다. 이 부분은 수능 시험에 대해 잘 알고, 수학을 잘 하는 사람(교사나 학원 강사)에게 도움을 구하면 좋을 것입니다.
이제 교재에 대한 불만을 적어 보고, 교재 선택 요령과 단권화를 위한 교재 선택도 말씀드려 봅니다.
저는 고교 수학 교재에 대해 '너무 문제 풀기가 어렵다'고 느낍니다. 이는 해설집의 두께가 두껍다 얇다 식의 해설이 자세하냐 정도의 문제가 아니라 책자 자체의 체계와 담고 있는 내용에 대한 문제입니다. 이를 자세히 써 보겠습니다
한국 고교 수학 교재는 외국의 경우 대학 수준의 수학 내용을 담고 있는 경우가 많습니다. 미적분 부분만이 아니라 정수, 수열, 삼각함수 등도 쓸데없이 어려운 연습문제가 많습니다. 이렇게 책 내용이 어려운 경우에는 책자가 대학 교재 형식이어야 합니다. 대학 교재 형식은 한 마디로 글로 된 설명이 많은 방식입니다. 책자가 단순히 정리 증명과 문제 나열 만으로 된 것이 아니라 자세한 글로 이루어진 부분이 많습니다. 이를 자세히 말해 보겠습니다.
일반적으로 계산위주 과목(수학,과학,공학, 회계 등)에서 계산 문제 내용을 기술하는 방법은 세 가지입니다.
첫째로는 계산을 본문 자체에서 설명하는 것으로 주로 공식유도와 대표적인 문제를 서술할 때 쓰입니다. 줄글로 쓰이며, 수식의 각 부분이 어떤 생각 흐름(연상)에 의해 넘어가는지를 글로 일일이 설명하게 됩니다. 또 답만 달랑 구하는 것이 아니라 해의 특성을 설명하며, 문제의 조건(초기 조건)이 바뀜에 따라 해가 어떻게 변할지도 설명해 줍니다. 나아가 해를 구하는 방법이 다른 문제에서 어떻게 활용되는지를 설명하기도 합니다. 특히 문제를 풀기 전에 '이 문제는 어떤 이유로 풀어야 하는 것인지와 관련된 유형으로는 다음의 문제들이 있다' 식의 내용이 들어가기도 합니다. 이렇게 부연 설명이 많기 때문에 본문에 서술된 문제를 익히고 나면, 응용력이 높아집니다.
둘째로는 예제로 풀이하는 방식입니다. 대개 예제는 본문에 삽입된 형태(주로 박스 내부)로 있거나 예제 번호를 달아 본문과 구별하게 됩니다. 주로 공식이 유도된 뒤에 그 공식을 어떤 정형화된 패턴에 따라 적용하는 문제가 예제로 나옵니다. 예제에서는 답을 구하는 과정까지는 자세히 나오지만 해의 특성을 분석하거나 문제의 의의(어떤 상황과 관련된 문제이며, 어떻게 변형가능한 것인가)는 잘 나오지 않습니다. 본문에 나온 문제 풀이에 비해 예제 풀이로는 응용력이 떨어지게 됩니다.
세째로는 연습문제 방식입니다. 이는 주로 책의 장별로 맨 뒤에 문제가 몰려 있는 형태입니다. 어려운 문제가 많이 나오며, 여러 부문의 내용이 섞인 문제도 나옵니다. 대학에서는 상당수의 책자가 연습문제에 대해서는 답만 실려 있고, 풀이도 없습니다. 풀이가 없는 것에 비해 풀이가 있는 책자가 당연히 더 좋은 책자이며, 훨씬 유명합니다(따라서 풀이가 있는 책자를 우선적으로 택합니다). 풀이가 실려있다고 해도 답을 구하는 과정 위주로 적혀있고, 서술된 내용도 생각 흐름이 건너뛰게 된 것이 많아 상당히 이해하기 어려운 경우도 많습니다. 연습문제 방식으로 푸는 것은 예제 방식으로 푸는 것에 비해 응용력이 더 떨어지게 됩니다.
동일한 문제가 본문 설명, 예제, 연습문제로 나와 있을 때 어떤 차이가 있는지 예를 들어보겠습니다. 고2학년 1학기에 배우는 수열에서는 하노이탑 문제가 나옵니다 (세 개의 막대에 대해 원반 옮기기의 횟수 구하기 문제) 많은 분이 아시듯이 하노이탑 문제는 대학 이산수학(또는 프로그래밍 언어)에서 다루는 문제로 재귀 기능을 이용하는 대표적인 것입니다.
이에 대해 본문에서 설명하는 경우에는 재귀 기능이 어떤 경우에 나타나고 그를 점화식으로 어떻게 나타내며, 그에 따라 최종 결과값을 구하는 공식이 어떻게 유도되는가를 자세히 설명하며, 답(원반 이동 횟수)를 구한 뒤에도 재귀 기능이 나타났을 때 빨리 알아차리는 요령 등을 서술해 줍니다. 실제로 서술된 양도 2쪽 분량에 가깝습니다.
예제로 다뤄진 책자에서는 단순히 원반 이동 그림을 몇 개 그려놓고 그를 수식으로 전환한 뒤에 지수함수적 관계가 나타난다는 말을 적고서 바로 답을 구하게 경우가 많습니다. 이렇게 된 풀이를 보면 왜 이 문제가 나왔는지도 모르고, 어떤 유형의 문제가 이와 관련된 것인지도 모르게 됩니다. 다만 이 문제 자체는 실수없이 풀 정도가 됩니다.
연습문제로 다룬 경우에는 해설 공간이 부족해서인지는 모르겠지만 그림도 없고, 수치적으로 추상화된 이동 횟수가 몇 개 적혀있고 바로 일반식(점화식)을 구해 답을 구하는 식의 해설이 써 있습니다. 이렇게 풀이된 경우 풀이는 사실상 3-4줄에 불과하게 됩니다 (책을 절반으로 접어서 서술한 경우 8줄 정도) 이런 풀이는 잘 이해가 안 되는 경우도 많고 여기의 내용을 다른 것에 응용해서 풀거나 관련 문제를 풀 때 재귀 관련 내용을 유추해서 푼다는 것은 상상하기 어렵습니다.
동일 내용을 본문에서 다룬 경우 관련 문제 10문제를 더 풀 수 있게 된다면, 예제로 다룬 경우에는 관련 문제를 3문제 더 풀 수 있을 정도의 응용력이 생기고, 연습문제로 다룬 경우 똑같은 문제 외에는 거의 응용해서 풀어내는 것이 불가능하다고 할 수 있습니다.
대학 책자가 고교 수학 책자와 다른 점은 주요 문제가 본문이나 예제로 다루어져 있고, 여기는 수식보다는 줄글로 된 설명이 많아 전후 관계를 이해하기 쉽게 된 것이 많다는 점입니다. 고교 책자는 대부분이 도입부와 공식 유도 부분의 약간을 제외하고는 대부분 수식만으로 되어 있어서 이해가 잘 안됩니다. 게다가 시험에 나올 만한 것들은 주로 연습문제로 다루어져 있고, 거기에는 설명도 제대로 되어 있지 않습니다(어떤 책자는 연습문제의 풀이가 대부분 '준식은 다음과 같다'라는 식으로 시작되어, 도대체 왜 그렇게 푸는지와 전체적인 풀이 방향의 설명은 아예 생략한 경우도 있음)
대학 책자가 설명이 많도록 만들어진 이유는 문제 자체가 어려운 것이 많아 생각의 흐름을 말로 설명하면서 이어나가는 것이 필요하고, 어떤 해법을 택해야 하는가에 대한 배경 설명, 풀이 윤곽이나 해결 포인트를 말로 먼저 설명하고 그 후에 그림이나 표 등의 관계도를 보여주고, 마지막에 숫자로 추상화해서 풀이하는 과정을 택합니다. 만약 초등 산수처럼 단순 덧뺄셈 문제라면 이런 과정이 전혀 필요없을 것입니다.
중고교 수학을 살펴보면 대략 중학교까지는 해법을 따로 생각하지 않고 기계적으로 푸는 과정을 거치는 문제가 많습니다(도형 문제 제외) 따라서 푸는 연습만 많이 하면 별 생각없이 문제가 풀리고, 문제가 안 풀릴 때 해답지를 보면 그 해설의 이해도 쉬웠습니다. 고교부터는 달라집니다. 도대체 왜 이 문제를 낸 것인가도 궁금하고, 풀이의 핵심 포인트는 무엇이며, 그를 수식으로 쉽게 나타나게 하기 위해서는 어떻게 해야 하는가부터 고민해야 합니다.
문제가 되는 점은 고교 수학부터는 사실상 대학 수학처럼 공부하는 것이 맞을텐데 정작 시판되는 개념서와 문제집 등은 중학교 방식으로 된 것이 많다는 것입니다. 즉 줄글로 설명된 책은 거의 없고, 문제를 가능한 한 본문(예제)에서 다루기 보다는 연습문제에서 다루는 경우가 많아 학생의 이해도를 낮추고 응용력을 떨어뜨리게 된다는 것입니다(실제로 유명 문제집 중 하나는 하노이탑 문제를 달랑 10줄(책 절반에 대해)로 풀이한 경우도 있습니다)
보편화된 개념서인 정석의 경우 문제점이 하나 더 있습니다. 저는 정석을 80년대 말에 처음 보았는데, 한 쪽마다 예제가 하나씩 있고 설명도 그에 맞춰 길이가 되어 있어 참 쪽마다 딱딱 끊어지게 쓰여진 책이다고 생각했습니다. 대학에 들어간 뒤 여러 책자를 접해보다 보니 60-70년대 일본의 책자가 그런 식으로 쓰였던 적이 있는 것을 보면서 정석도 그와 비슷한 방식으로 했었나보다 라는 생각이 들었습니다. 이 방식의 책자는 가장 큰 문제점이 전후 연결이 되지 않는다는 것입니다. 단적으로 말하면 예제 1과 예제 2가 왜 나온 것이며 이런 문제는 어떤 문제를 대표하는 것인가라는 것을 알 수 없고 그냥 문제 풀이 수식만 익히게 됩니다. 유제 등의 문제를 풀면서 어렴풋이 '아! 이런 것을 포인트로 하여 만든 문제인가 보다. 대략의 유형은 이것인 것 같다'라고 스스로 유추해야 합니다. 이런 식으로 어렵게 공부하다 연습문제에 들어가게 되면 왜 이런 문제를 낸 것이며, 어떻게 풀라는 것인지 알 수 없는 즉 응용이 불가능한 경우를 많이 경험하게 됩니다.
저의 개인적인 생각으로는 정석을 꼭 공부해야 한다면 유제는 아예 생략하고(예제와 거의 동일한 것이며 연습문제를 풀다보면 유제는 충분히 풀 수 있음), 예제와 연습문제를 구별하지 않고 관련된 것끼리 묶어 본문형식의 줄글로 노트에 풀어 단권화하겠습니다. 연습문제는 적당히 어렵고(즉 내가 풀이를 계산 실수 없이 해낼 수 있을 정도) 중요한 것으로 간추려 약 1/2만 풀도록 합니다.
지금까지의 내용을 정리한다면, 현재 고교 수학 문제집은 줄글의 설명이 없고 수식만으로 풀이되어 이해가 어렵고 연습문제 위주로 되어 있다는 문제가 있습니다. 책자를 선택할 때에는 가능한 문제가 본문에 나와 있고, 연습문제보다는 예제로 설명된 책을 사는 것이 좋은 데 아직 이러한 책이 적습니다. 위의 내용을 반영해 수학 단권화를 위한 교재 선택과 단권화시 공부 순서와 책 내부 중 버려야 할 내용을 적어보면 다음과 같습니다.
책의 인기도를 감안해서 보면 개념서 – 정석실력 / 바이블, 내신문제집 - 쎈, 수능기출문제집 - 자이스토리, EBS교재 - 수능완성, 고득점N제를 택합니다. 개념서에서 줄글 설명이 많으며 인기 좋은 책을 보면 수학의 바이블이 있으나, 아직 학교 선생님들이 정석을 참고로 하며 거기서 시험 문제를 내는 경향이 있어서 정석을 넣었습니다. 정석을 싫어하거나 힘들어하는 학생이라면 바이블로 대체해도 됩니다.
공부 순서는 바이블, 정석과 쎈을 병행해서 1회 공부를 하면서 중요 문제(대표유형이나 어려웠던 문제)를 정리해 단권화 노트(핵심 노트)를 줄글형으로 만들고, 2회 공부시 자이스토리와 EBS 문제의 어려운 문제만 첨가하여 단권화 노트를 완성합니다(생애 최초로 배우는 단원이라면 2회 공부시에 교과서 익힘책과 학교 지정 문제집을 보시고, 3회 공부시에 자이 스토리와 EBS교재를 추가로 보십시오) 단권화 노트 완성후에는 이를 반복 공부하면서 각종 모의고사(교육과정평가원, 교육청 등)와 대입용 문제집 등을 한 권 정도씩 추가해 풉니다. (단권화 공부법 항목에 더 상세한 내용이 있습니다)
단권화 노트에 정리하는 내용은 모두 줄글형으로 풀이해 두도록 합니다. 줄글형으로 적어 두면 생각 흐름이 잘 됩니다. 계산에 능할수록 줄글을 적게 쓰고 수식만 적어도 사고흐름이 끊어지지 않으니 참고하십시오
4) 실력 정석 공부 문제
수학의 정석은 참 독특한 책입니다. 수십년 전에는 해법과 함께 고교 수학 참고서 시장을 양분했고, 지금도 그 내용과 체제가 변하지 않았음에도 그대로 수학 개념서의 1위를 달리고 있습니다. 대형 서점의 정석 칸에 가 보면 가끔 '이 책이 아직도 팔리냐'는 말을 듣기도 합니다. 하지만 인터넷에는 '정석 공부법'이란 글이 돌아다닐 정도로 정석을 보는 사람이 많습니다. 또 그만큼 정석에 좌절하는 학생도 많습니다.
앞에서도 적었지만 정석은 60-70년대에는 참신한 체제를 갖고 등장한 책입니다. 일본 책의 체제를 가져왔다는 말을 많이 듣습니다. 미국 책과 일본 책을 비교해보면 미국 책은 줄글로 자세히 설명되어 있고 (가끔 농담도 들어있습니다) 자습에 좋은 반면, 일본 책은 요점만 딱딱 정리되어 있고 한 쪽이나 한 단원이 정해진 분량으로 맞추어져 있습니다. 물론 요즘은 일본 책도 미국화되어가고 있습니다. 미국 책은 전세계 사람들이 읽을 것을 염두에 둔 것이라서 각종 해설도 풍부하고 수학, 공학 책 등은 해설집도 따로 나옵니다. 일본 책은 인구가 많은 나라이어서인지 학교 외 학원 교육이 가능하리라는 전제 하에 선생에게서 배울 것을 전제로 만들어진 책자라고 느껴집니다.
정석도 위의 일본 책의 특징을 갖고 있습니다. 한 쪽별로 딱딱 나누어진 분량, 각 쪽의 예제가 어떤 관계를 갖는지 설명이 없는 점, 자습보다는 선생이 가르칠 것을 전제로 하는 책자라는 생각이 듭니다. 사실 제가 공부하던 학력고사 시절에는 학원없이 학교 선생님만으로도 수학을 충분히 가르쳤고(당시 선생님들은 학생처럼 7시 출근, 밤 10시에 퇴근했고, 학생들의 대학 진학에 대해 책임을 졌습니다), 학생들도 스스로 수학을 자습했고 그 때 공부했던 대표적인 책이 정석이었습니다. 이를 보면 정석이 꼭 어려운 책이라는 생각은 안 들기도 하지만 공부 효율이 나쁜 편인 것은 사실입니다.
정석이 인기는 약간 감소했지만 수능 시대에도 체제 변화없이 그대로 적응할 수 있었던 것은 무엇보다 2000년대로 오면서 수학 과목의 난이도 약화가 일어났기 때문이라는 생각이 듭니다. 1990년대에는 대학 자율화, 2000년대에는 특성화 교육이 강조되면서 모든 과목을 전반적으로 잘 하는 학생보다, 특정 과목만 잘 하는 것으로도 대학 진학이 가능해 졌고, 또 교육도 중간층의 실력 강화보다는 하위권 구제와 뛰어난 상위권 배출을 목표로 하게 되었습니다. 그러다 보니 전반적인 수학 공부량을 줄어들게 되었지만(수포자-수학 포기자-라는 말이 그를 대변합니다) 특정 학생들은 대학 수학까지 미리 공부하게 되는 기이한 현상을 보이게 되었습니다. 이처럼 2010년대 이전까지는 수학 과목이 약화되었기 때문에 정석도 학력고사에서 수능으로의 변화에 대한 별 대응없이도 그 인기를 유지한 것이라 생각됩니다. 흥미로운 것은 각종 경시대회 등 특수한 시험의 문제가 일부 정석에 유입된 것 같다는 느낌도 있습니다. 정석 연습문제를 보면 우연적인 풀이를 가진 문제가 꽤 있습니다. 이런 문제를 푸는 것은 소위 말하는 천재 퀴즈에나 도움이 되며, 수학 자체의 실력 향상에는 도움이 안 됩니다(이런 문제는 결국 풀이를 외워야 합니다) 학생들이 정석에 짜증을 내는 이유 중의 하나가 여기에 있습니다.
정석은 물론 다른 수학 책자들도 다음의 문제점이 있습니다.
첫째, 개개의 하위 챕터에 대해 연관성이 없어서 어떤 순서와 어떤 이유로 이 부분이 들어있는가에 대한 감이 생기지 않습니다. 특히 유형별로 예제를 연달아 나열하는 것은 유형 연습에는 좋습니다. 하지만 유형별로 암기하는 방식으로 공부하게 되고, 문제에 대한 해법을 찾아가는 생각 흐름을 연습하는 것에는 도움이 되지 않습니다.
둘째, 문제에 대한 해설 특히 연습문제에 대한 해설은 숫자 계산에 해당되는 부분만을 쓴 것처럼 느껴집니다. 동일 문제에 대해 '왜 이런 방법이 아닌 이 방법을 택했는가'에 대한 단서를 주어야만 학생들의 실력이 늘어나게 되는데 이 부분이 약합니다(수학의 바이블 책이 이런 면에서 좋습니다)
마지막으로 특정 단원의 난이도가 매우 높습니다. 이산량을 취급하는 정수 관련 단원과 행렬 등이 그러하다고 느껴집니다. (저자가 혹시 이 부분 전공인가 하는 생각도 듭니다) 사실 정수 관련 문제의 풀이에서는 새로운 공식의 이해와 적용보다는 개별 문제의 해법을 외워야 하는 식의 문제가 많습니다. 이는 고1학년 수학 과정 목표 자체가 중학 과정의 수학 개념을 더 확장하지 않고 적용 연습을 시킨다는 것에서 문제인 것 같은 느낌도 듭니다. 하필이면 이 정수 부분이 고1 초반에 나오기 때문에 수학을 좋아하던 학생마저도 여기서 정이 떨어지게 만들 정도입니다. 반대로 학원에서는 이를 핑계로 들어 고1과정 선행수업을 강력히 주장합니다. 고교 수학에도 중요한 새로운 수학이 많습니다. 삼각함수, 지수와 로그, 벡터와 행렬, 미분과 적분, 이항정리와 확률 통계론 등 새 것을 배우면서 재미를 느낄 부분이 많은데, 그를 접하기도 전에 포기하게 만든 것입니다. 특정 단원의 난이도가 매우 높은 것은 정석에서 심하게 나타난 문제인 것 같아 이를 자세히 써 봤습니다.
위의 단점에도 불구하고 정석을 공부해야 하는 이유는 다음과 같습니다. 절대 다수의 학생들이 이를 공부하기 때문에 상대 평가 시험에서는 어쩔 수 없이 봐야 하는 책이고, 수학 시험 문제를 내는 선생님들이 정석 책자를 참고하는 분이 많기 때문에 아직도 시험에 유용한 책입니다. 그리고 개념 설명 부분(공식 유도 등)이 일반적인 책자에 비해 충실한 편이고, 특별히 빠진 부분이 없는 책자라서 학생들이 많이 봅니다.
이제 정석 수학책의 공부법을 간략히 살펴보겠습니다.
웹사이트 등에 나오는 일반적인 수학책 공부법으로는 1) 개념공부(공식 유도와 이해)를 충실히 한 뒤 2) 예제를 완전히 습득하고(안 보고 풀 수 있을 때가지) 3) 연습문제를 가능한 답을 보지 않고 풀고, 잘 안 풀렸던 것은 오답노트를 만들어 적어두라 는 것입니다. 정석에도 이런 공부법이 권해집니다. 개인적인 생각으로는 정석보다 쉬운 문제집을 풀고, 대신 수능 기출 문제를 빨리 접하는 것이 효율적인 공부라고 보며, 정석보다 쉬운 개념서도 있으니 그를 통해 개념을 이해하고 정석은 연습문제만 이용하는 것이 낫다는 생각이 듭니다.
정석 공부의 가장 큰 난점을 바로 연습문제가 유형별 구분이나 순서없이 그냥 난이도 순으로 배열된 것 같고, 그 중에는 일반적인 학생에게는 도움되지 않는 부분도 있어서 생략해야 하는 부분이 있다는 점입니다. 또 정석 책자의 연습문제는 소위 말하는 상위권 학생들이 보는 것이라고 생각해서인지 가능한 답을 보지 말고 풀라는 방법이 권해지는데 이렇게 되면 정말 공부 효율이 나빠지고 공부 의욕마저 떨어집니다 (공부 의욕이 넘쳐 정석 공부 때 답을 안 보고 풀었고, 이를 세 번 반복하여 대학입시에서 좋은 수학 성적을 거둔 친구가 있었는데, 정작 다른 과목의 공부시간이 모자라 원하는 대학을 가지 못 했던 예가 있습니다)
정석의 연습문제를 어떻게 적절히 구분하여 풀고, 또 어떤 문제만 해설지를 봐서 참고해야 할 지에 대해 답해주는 사람은 드뭅니다. 가장 좋은 방법은 선생님(더 정확히는 학원 강사겠지만..)이 제시하는 순서대로 따라가며 공부하는 것입니다. 하지만 이는 과외 선생이나 개별 지도 학원 선생님이 있다는 전제에만 가능할 것입니다.
저는 다음의 요령을 권합니다. 쉬운 책자의 연습문제(해설이 잘 되어 있고, 유형별 정리가 이미 되어 있으며 수능 문제 등 특정 시험의 문제는 출제 연도가 표기된 것이 좋음)를 풀고 나면, 정석 책자의 연습 문제 유형과 쓸데없이 어려운 문제의 구별이 가능해집니다. 쉬운 책자의 연습문제를 다 풀고서 정석의 연습 문제 중 막히지 않고 풀릴 만한 것을 먼저 풀고, 어려워 보이는 것은 해설을 읽어가면서 '왜 이런 해법을 택해서 풀었는가, 어떤 계산법이 더 효율적인가, 검산을 하는 데에는 어떤 방법이 더 효율적인가'를 생각하고, 문제 풀이와 함께 자신이 생각해 낸 내용을 적어둡니다. 쓸데없이 어려운 문제는 포기하십시오. 어차피 시험에 나와도 정답을 구해내지 못합니다. 시간상 정답 확인까지 해내기 어렵기 때문에 결국은 계산하다가 틀립니다. 이는 수학 공부가 취미일 정도의 학생에게나 적당한 것이며 그런 것은 틀려도 좋은 대학 가는데 지장이 없습니다.
정석처럼 골치아픈 책자를 공부하는 데에는 아주 중요한 원칙이 있습니다. 해설지를 보고 풀든, 안 보고 풀든 '나의 확실한 풀이법(특히 왜 이런 해법을 택했는가에 대한 설명이 가능해야 함)을 가진 사람'은 그 문제를 시험장에서 풀 수 있고, 혼자 풀었다하더라도 확실한 풀이법을 연습하지 못 한 사람은 결국 시험장에서 그 문제를 틀립니다. 어떤 분은 이를 강조해서 '스스로 풀든, 답지를 보고 풀든 꼭 자신의 노트에 자신의 언어와 그림으로 풀이법을 써 놓아야만 문제를 푼 것이다. 그 외에는 안 푼 것과 같다'라고 한 적도 있습니다. 그러니 해설지를 보는데 주저하지 마시고(그런다고 창의성이 없어지는 것은 절대 아닙니다. 실효적인 창의성은 천재성이 아니라 숙달된 지식의 새로운 연결에서 나오게 됩니다. 이는 인적자원 개발론에서 증명된 것입니다) 대신 나의 해법으로 만드는 데 노력하시는 것이 필요합니다.
5) 단권화 공부법
이제 제가 생각하는 공부법의 가장 핵심인 단권화 공부법을 소개합니다.
단권화는 쉽게 말해 핵심노트와 오답노트를 한 권으로 만드는 것이고, 개념서, 표준적 문제집, 학교 선택 문제집, 수능 기출 문제집, EBS교재를 모두 정리해 내신 공부와 수능 공부를 통합하는 것입니다. 아직 수능을 대비할 생각이 없다면 앞의 세 권 정도만 대상으로 해도 됩니다. 원래 고시에서는 기본서 두 권과 문제집 한 권을 대상으로 단권화하는데 수능에서는 필수 문제집이 많다 보니 어쩔수없이 책자 수가 늘어났습니다.
대표적인 개념서로는 바이블(이투스 간)과 정석이 있습니다. 풍산자 등을 보는 분도 있는데 자기에게 맞는다면 그 어떤 것을 택해도 좋습니다. 개념서는 무엇보다 공식 유도와 예제 풀이가 잘 되어 있고, 연습문제도 너무 어렵지 않은 것을 택해야 합니다. 어차피 개념서 이후에 4가지의 문제집을 추가로 더 봐야 하므로 개념서는 표준적인 문제 풀이 접근법만 잘 나와 있는 책이면 됩니다. 이런 면에서 정석은 좀 안 맞는 것 같으나 워낙 대중적이고 학교 선생님이 많이 의지하는 책이라 넣게 되었습니다. 정석 한 권으로 개념 이해가 충분하다면(독학으로 이렇게 해 낼 수 있는 분은 드문 것으로 압니다) 정석만 보셔도 좋고, 일반적인 분들은 바이블을 주로 보고 정석은 참고하시는 정도로 보시면 좋습니다.
표준적 문제집은 교과서 출판사와 관계없이 남들이 다 보는 문제집을 말하는 데, 쎈이 대표적이라 하겠습니다. 학교 선택 문제집은 학교 교과서의 출판사가 만든 문제집이나 교과 선생님이 택하신 문제집을 말합니다. 이런 책의 문제들은 대개 정석이나 쎈의 문제와 중복되는 것이겠지만 몇 문제는 독특한 것이 있으니 그를 단권화할 때 포함시켜야 합니다.
수능 기출 문제집에는 여러가지가 있지만 단원별 기출 문제집으로는 자이스토리를 많이 보니 그를 택하면 될 것 같습니다. EBS문제집으로는 10주 완성 시리즈를 보시고, 시간이 되시면 고득점 N제를 추가로 보시면 됩니다.
5종류의 책자를 중복없이 한 권으로 단권화하는 방법을 적어보겠습니다.
개념서로는 바이블+정석을 기준으로 합니다. 먼저 바이블과 정석의 공식 유도와 예제 내용을 주욱 읽어가면서 단권화 노트에 정리합니다. 이 때 한 권을 다 읽고서 다른 책자를 보는 것이 아니라 두 권을 다 펴놓고 소챕터별로 함께 보는 것이 이해하는데 좋습니다 (이렇게 책을 펼치려면 우선 책상이 넓어야 합니다) 한 번에 세 권까지 보는 것이 가능하다면 쎈의 유형별 문제(B단계)에서 글로 설명하는 문제도 함께 정리하면 어떤 부분이 아리송한 부분인지 잘 알 수 있습니다.
이렇게 바이블과 정석의 예제, 쎈의 설명형 문제까지 정리한 뒤 쎈의 유형별 문제를 읽어보면서 단권화 노트에 정리할 만한 좋은 문제를 고릅니다. 여기서는 틀릴만한 문제만 고르는 것이 아니라 대표적인 유형문제와 어려운 문제(잡다한 계산이나 우연한 아이디어를 필요로 하는 문제가 아니라 내가 모르던 개념을 담고 있는 문제)를 고릅니다 사실 이 부분이 가장 설명하기 어려운 요령이 필요한 것입니다만 몇 번 하다보면 자신만의 요령이 생깁니다. 저는 우선 답지를 보아 '별도의 풀이'를 가진 문제는 당연히 첨가시키며 비슷한 유형이 여러 개 있는 경우에는 마지막 것만 포함시킵니다. 대표 유형 문제와 난이도 상급의 문제, 신유형 문제 등을 보면서 이 세 가지가 비슷한 내용을 담고 있으며 가능한 뒤쪽의 것을 택합니다. 대략 대표 유형, 상급 문제, 신유형(최고난도 등) 문제의 50%정도가 골라지게 됩니다. 그리고서 쎈의 C단계 문제도 마찬가지로 문제를 골라 봅니다. 여기서는 50-70%정도가 골라지며 B단계의 문제와 비슷한 유형이면서 더 힘든 문제가 나와 있으면, 쉬운 것은 지우고 힘든 것을 선택합니다.
다시 바이블의 연습문제, 정석의 연습문제에 대해서 문제 선택 작업을 합니다. 여기서도 대략 40%정도가 골라집니다. 정석에서 너무 어려운 문제는 단권화 노트로 들어갈 것이 아니라 버려야 합니다.
노트에 정리할 때에는 문제와 풀이를 모두 적습니다. 깔끔히 정리하는 것도 필요하겠지만 핵심적인 것은 '내가 이해한 형태의 풀이'가 적혀 있어야 합니다. 이해 못 하는 풀이는 기록해도 아무 효과가 없습니다 그리고 여러 가지 풀이법이 있는 경우 그를 모두 적어 두고, 그 중 어느 것이 가장 시간 효율상 좋은 것인지도 적어 놔야 합니다. 이렇게 다양한 풀이법을 확보하는 것이 중요하므로 문제를 풀 때는 모두 해설지를 참조해야 합니다. 즉 자신이 풀어낸 방법의 정확성 뿐만 아니라 시간 효율성도 확인해야 합니다 (대학 공부 때는 확실히 느끼는 것인데, 해설지도 교과서의 일부입니다. 그만큼 자주 봐야 하는 것이고, 해설지를 보지 않는다고 해서 창의성이 늘어나는 것은 아닙니다. 오히려 좌절감이 늘어나지요)
오답노트에 대해 간단히 말씀드리면 단권화 노트는 핵심노트와 오답노트를 포함한 것이어서 별도로 만들필요는 없습니다. 오답노트는 단권화 노트를 만들지 않은 상황에서 틀렸던 문제만을 빠르게 보기 위해 만드는 것입니다. 원래 틀렸던 문제(어렵거나 아리송했던 문제)는 그 모두가 나의 개념 이해 부족이나 계산력 부족을 보여주는 것이며, 이것들은 반복적으로 연습해야 하는 것이어서 지저분한 문제만 아니라면 모두 단권화 노트에 정리할 가치가 있는 것입니다 (즉 자신의 단권화 노트에는 일반적으로 중요한 사항 외에 자신만 잘 틀리는 부분까지 혼합되어 정리됩니다. 남을 가르치기 위해 정리하는 것이 아니므로 단권화 노트와 오답노트를 구분할 필요가 없습니다)
위처럼 책 3권을 한 권의 노트에 정리하면 그냥 문제집에 문제푸는 것보다 두 배 이상의 시간이 걸립니다. 하지만 단권화는 복습과 큰 시험에 대비에서 엄청난 효율을 보입니다. 한 단원에 대해 노트를 만드는 데 20시간이 걸렸다면 2회차 공부시에는 10시간이면 되고 (이 때 불필요한 문제를 일부 제거합니다) 3회차 공부시에는 5시간이면 됩니다. 수학의 경우 어떤 시험이든 문제를 3번 반복해 풀어봐야 확실히 대비된 것이라 하기 때문에 이렇게 반복적 공부를 예상하여 시간 계획을 짜야 합니다. 그리고 단권화는 단순히 시간만 단축시키는 것이 아니라 문제의 풀이법을 확실히 내 것으로 만들 수 있다는 장점이 있습니다.
개념서와 표준 문제집을 단권화해서 한 권의 노트로 만들면 이후의 복습 때는 수정 보완을 하게 됩니다.
2회차 공부 때에 단권화 내용을 다 공부한 뒤에 교과서나 익힘책의 문제, 학교 선택 문제집의 연습문제를 풀어봅니다. 이 때는 실력이 올랐기 때문에 괜찮은 문제만 골라서 풀고, 몇 개 문제만 단권화 노트에 추가합니다. 그리고 단권화 노트에서 중복되거나 더 좋은 문제를 찾은 경우 기존 내용은 제거합니다 (약 10%정도의 문제는 삭제될 것입니다). 입시 준비생이라면 2회 공부시에 바로 수능 기출과 EBS 교재를 보시면 됩니다.
3회차 공부 때에는 수능 관련 문제집을 봅니다. 수능 기출 문제집과 EBS 문제집을 보는 것입니다. 자이스토리와 EBS문제집 중 어느 것을 먼저 보느냐도 문제입니다만 사실 EBS문제집은 해마다 바뀌는 것이어서 중요도가 좀 떨어집니다. 저자의 일관성, 문제의 중요성(기출 관련성)을 감안하면 자이스토리 문제를 먼저 봐야 합니다. 자이스토리에서 쉬운 문제는 걸러내고 3점, 4점 문제를 중심으로 대표적인 것과 어려운 것을 택하고서, 다시 EBS문제집의 어려운 문제 위주로 택해 봅니다. 이것을 다시 단권화 노트에 정리합니다. (그동안 바이블, 정석, 쎈을 두 번 푼 셈이므로 너무 어려운 문제는 없을 것입니다. 풀기 어려운 문제가 많다면 풀이법을 충분히 익히지 않은 채로 단권화 했거나 공부한 지 오래되어 잊어버린 것입니다)
단권화 노트를 만드는 요령의 하나를 말씀드리면 책자를 살 때 가능한 문제지에 풀이가 나와 있는 교사용 책자(헌 책으로 많이 나와 있지요)를 사시면 문제지와 해설서를 각각 보는 수고를 덜 수 있습니다
단권화 노트를 만들고 나면 한 단원에 약 70문제 정도가 남게 됩니다(중복된 부분의 삭제 후 기준) 대략 한 학기에 11개 단원이 있으며(쎈 기준) 수능 시험은 4개 학기(이과 기준: 수I 수II 적통 기벡)이므로 3천 문제 정도가 단권화 노트에 기록 됩니다. 이 노트를 수능 시험 1달 전에 한 번, 다시 1주 전에 한 번 공부할 수 있다면 '수학 때문에 좋은 대학 못 갔다'는 말은 나오지 않을 것입니다. (고등학교 1학년 수학까지 감안한다면 약 4000문제가 단권화 노트에 정리될 것입니다. 노트의 쪽수는 약 400-500쪽이 될 것입니다)
사실 이외에도 추가될 부분은 좀 더 있습니다. 시험보는 해의 평가원 모의고사, 서울시와 부산시 교육청 모의고사, EBS 고득점 N제 정도는 추가로 단권화 노트에 정리하는 것이 좋습니다. 시간이 되신다면 이것까지 단권화하여 복습해 보시기 바랍니다.
* 추가로 공부할 만한 교재(대학 수학용 책자)
단권화를 하다 보면 더 정리할 만한 책자를 찾고 싶다는 의욕도 생깁니다. 단순 반복형 공부가 아니라 새로운 것을 연구하는 것 같은 기분이 들기 때문입니다. 이 때 고교 수학에 대해 고난도 책자(과학고 고급수학 등)를 보려는 분도 있지만 그보다는 바로 대학 미적분학을 공부하시는 것이 좋다고 생각합니다. 이유는 수시에서 수학을 어렵게 내는 경우 대학 수학 과정을 일부 포함한다고 들었고 (대학 교수님들이 내는 문제이니 당연하다는 생각도 듭니다) 더 중요한 것으로 우리나라에서도 대학과정 선이수제도가 점차 확산되고 있으니 이를 대비하기 위해서라도 대학 교재를 보는 것이 좋다고 생각합니다. 그리고 수학은 상급과정을 배울수록 그보다 하위 과정의 문제를 쉽게 푸는 방법이 자주 나옵니다(대학에서 배우실 때 복소적분을 배우면 '참 편리한 방법도 있구나' 라는 말이 나올 정도입니다)
그러니 경시대회 대비 문제집처럼 일회성으로 버릴 내용보다는 대학에서 배우는 내용 중 고교생으로서 알아두면 좋을 만한 것을 미리 공부하시길 권합니다.
미리 공부할 만한 대학 수학으로는 미적분학, 공업수학, 통계학이 있고 필요한 장만 골라서 봐야 합니다.
미적분학 책자는 대학 1학년 수학 교재로 많이 쓰이며 수학과 외에는 거의 이 내용만 다룹니다.(통계학과나 전산학과에서는 이산수학 등의 특수한 것도 배우지만 이것은 특정학과에만 해당되는 것이니 생략하겠습니다). 경영 경제, 이공계 대학의 1학년 수학은 대부분 미분적분학이며 토마스(George B.Thomas) 책자나, 제임스 스튜어트(James Stewart) 책자를 많이 봅니다. 이 책들은 제가 공부할 때만 해도 들고다닐만한 수준이었는데 지금은 1500쪽이 넘는 두께를 자랑하고 있습니다. 하지만 그 대부분이 설명 위주라 생각하시고 참고 보실 수 있을 것입니다. (둘 다 연습문제 해설서(솔루션)이 나와 있습니다) 옛날 책을 보나 새 책을 보나 내용은 비슷하니 헌 책을 사도 괜찮습니다.
미적분학 책에서 꼭 보라고 말씀드리고 싶은 부분은 쌍곡선 함수와 극좌표, 중적분 입니다. 그리고 물리(특히 역학과 전자기학)를 좋아하신다면 벡터 미적분학도 함께 보시면 좋겠지만 어려운 부분이니 나중에 공부하셔도 좋습니다.
위 내용을 공부하시고도 더 의욕이 불타신다면 응용수학의 결정판인 공업수학을 공부하시면 됩니다. 수학과 이외의 모든 학과 중 가장 수학을 고난도로 배우는 것이 공업수학이라고 말하기도 합니다. 여기서는 선형 미분방정식, 복소해석, 행렬해석, 벡터미적분학 정도만 보시면 될 것입니다. 많이 보는 교재는 Eewin Kreyszig의 책이나 PETER V. O NEIL 책인데 저는 후자를 권합니다. 전자가 더 많은 사람이 보는 책이지만 설명이 좀 엉성한 것 같고 너무 많은 내용을 한 권에 담으려고 한 것 같아서 이해가 안 되는 부분이 많았습니다. 혼자 공부할 때에는 후자를 권합니다.
혹시 수리물리라는 책을 보려는 분이 있다면 공업수학과 비슷한 것이니 그냥 공업수학만 보십시오. 공업수학은 물리 중 수리적으로 해석할 수 있고 공업적으로 응용되는 부분을 수학과에서 다루는 것이고, 수리 물리는 비슷한 내용을 물리과에서 다루는 것입니다. 수학적으로는 공업수학 책이 수리물리 책보다 더 정교하고 풍부합니다(수리 물리 책자를 보면 물리적인 감은 더 잘 느껴집니다)
공업수학을 공부하는 대신 통계학을 보시는 것도 권해드립니다. 사실 과학, 공학의 이론연구 분야에서 일할 것이 아니라면, 수학 중에서는 결국 기본적인 미적분과 통계학만을 쓰게 됩니다. 통계학은 수학적으로 공부하기보다는 사회과학적 관점에서 공부하는 것이 좋다는 말이 있습니다. 통계학 중 수리 통계학이 제대로 된 이론서이지만 그는 어려우니 그냥 한국 대학생(특히 고시생)이 많이 보는 현대 통계학(박정식 저)을 보십시오. 상관관계와 회귀분석의 개념을 이해하는 위주로 보시면 좋을 것이고, 여기서 행렬 계산법의 위력을 느끼게 됩니다 (전체 경제 현상을 행렬 하나로 통합해서 보여주는 계산법이 가능합니다)
대학 수학을 미리 공부하는 것도 좋지만 더 중요한 것은 고교 수학을 빠진 부분 없이 잘 정리하는 것입니다. 사법시험 공부를 할 때 흥분하여 특정 과목을 너무 열심히 공부하는 사람이 있다고 합니다(대개 형법에서 그런 일이 있다고 합니다) 이런 방식의 공부는 그 결과가 좋지 않으니 괜히 자랑삼아 대학 수학 공부하겠다고 나서기보다 수학 외 다른 과목의 공부를 균형있게 공부하는 데 시간을 쓰시기 바랍니다.
참고로 대학 수학을 강의하는 웹사이트가 있습니다. 제가 대학 다니던 때에는 서울대 입구 역에 공업수학을 가르치던 곳이 있었는데 당시는 대학원 입시용으로 가르쳤지요. 지금은 웹사이트에도 몇 군데 가르치는 것 같고 제가 눈여겨 보았던 것은 큐스터디라는 곳입니다(웹사이트 광고는 아닙니다. 능력되시는 분은 유투브에 가면 MIT강좌도 올라와 있다고 하니 그를 보십시오). 한 분이 거의 수학과의 학부 과목을 다 가르치시더군요. 그 분을 보고서 많이 반성했습니다. 흥미로운 것은 그 분의 수업이 지루하다는 댓글 평이 있있는데 그에 대해 답글로 ‘대학에서 저 분만큼 찬찬히 가르치는 분 드뭅니다. 고등학교 때는 교사가 가르치지만 대학 때는 교수가 가르치시죠. 뭔 말 하는지 이해되는 경우가 드물 정도입니다’라는 글이 있었습니다. 세상이 좋아져서 요즘에는 대학교 과목을 고교 때처럼 찬찬히 가르쳐 주시는 분도 있고 그것이 인터넷에 올라와 있다는 것도 재미있었습니다.
6) 단권화와 학원 공부의 조화
단권화 공부법의 중요 목적은 첫째는 시간 효율이고 둘째는 과목간 균형있는 공부 시간을 갖기 위한 것입니다. 한 과목에만 너무 시간을 많이 들이면 그 과목에서는 틀려도 될 문제를 맞으려고 노력하게 되고, 다른 과목에서는 맞아야 할 문제마저도 틀리게 됩니다. 단권화 공부법은 '내가 시험장에서 풀 수 있는 것만 골라서 잘 복습해서 준비한다'는 개념이므로 다른 과목 점수가 너무 낮아지면 입시에 실패하게 됩니다.
과목간 균형있는 공부가 안 되는 이유로는 1) 학생 자신이 점수가 잘 나오는 과목만 계속 공부하는 경우(대개 시험을 앞두고 벼락치기식 공부를 하는 사람에게 나타납니다), 2) 학원에서 특정 과목의 공부량을 너무 많도록 강요하는 경우가 있습니다.
학원에서는 자기가 맡은 과목에서 내신과 입시를 책임져야 하므로 숙제를 많이 내고, 공부한 티가 많이 나도록 하는 경향이 많습니다(이는 학원 생리상 어쩔 수 없습니다. 학부모님이 학생의 성적 향상을 1년을 두고 기다리면서 지켜보는 것이 아니라 1-2달 내에 결과가 나타나도록 요구하니 장기적으로 보아 효율적인 공부보다는 단순 반복적 공부를 시키는 방법으로 대처하게 된 것입니다) 특히 공부한 티가 많이 나도록 하는 방법으로 여러 문제집을 반복없이 순차적으로 풀거나(대부분 문제집에 직접 풀이를 쓰곤 합니다) 책자가 아닌 출력물로 공부를 시키게 됩니다.
이런 공부법은 중학교 때까지는 효과가 있고, 소위 말하는 '저런 어려운 문제도 풀어내는 똑똑한 학생(예전에 특목고 입시에 적합한 학생상)'을 만드는 것은 가능하지만, 공부량이 많이 요구되며 수십만명이 경쟁하는 시험에는 비효율적인 공부법입니다. 무엇보다도 복습이 불가능하게 되어 있고, 문제 풀이법이 자신이 이해한 풀이인지 그냥 받아 적어 놓은 것인지가 불분명하며, 오답 노트를 만든다 하더라도 너무 시간이 많이 걸리는 방식으로 노트를 만들기 때문에 별 효과가 없습니다.
그렇지만 학원 공부가 비효율성만 가진 것은 아닙니다. 특히 단권화 노트를 최초로 만드는 과정(바이블(정석), 쎈을 통합하는 과정)에서는 새로운 개념을 익히고 대표성있는 문제와 어려우면서 중요한 문제를 골라내야 하는데 이 때 선생님이 도와주시면 매우 큰 힘이 됩니다. 또 학원 선생님이 계시면 책의 해설서에서 이해되지 않는 부분을 물어볼 수 있고, 학원의 진도가 적절히 계획되어 있다면 단권화 공부법의 진도를 그에 맞추기만 하면 되므로 여러 모로 유용합니다.
단권화 공부법과 학원 공부의 조화를 위해 다음이 필요합니다.
1) 단권화 대상 교재가 학원 강의 교재인 곳을 택합니다. 학원에서 바이블(정석) - 쎈 - 자이스토리 - EBS 교재를 다뤄준다면 참 좋을텐데 이런 학원은 드물 것입니다. 여기 나온 교재는 모두 대중적인 교재라서 학생들이 혼자 공부하는 것이 맞고 학원은 그와 다른(소위 말하는 좀 더 어려운) 교재를 택하는 경우가 많습니다. EBS교재는 어차피 EBS방송에서 강의가 나오니, 쎈과 자이스토리를 교재로 하는 곳을 찾아보시면 좋을 것입니다
2) 학원 수업과 숙제가 출력물 위주로 된 곳은 피합니다. 고교생 아니 대학생들도 출력물로 된 수업 교재를 1년 이상 잘 보관하기는 힘듭니다. 출력물보다는 시중에 출판되어 있는 교재를 택하는 곳이 좋습니다. 출력물 위주로 하면 복습이 어렵고, 해설서가 제대로 되어 있지 않으며 (몇 쪽씩 출력해서 주는 경우는 답만 있거나 아예 해설이 없는 경우도 많습니다) 전체적인 체계도 엉망일 수 있습니다.
3) 평소 수업내용(숙제 포함)에 시험 기출 문제가 녹아들어 있는 학원이 좋습니다. 평소에 개념 설명, 유형 문제 연습만 하고, 기출 문제는 시험 때만 다루는 방식은 안 좋습니다. 평소 강의 시간에 학교시험의 기출문제를 섞어서 설명하고 가능하면 수능 기출 문제까지도 섞어서 설명하는 곳이 좋습니다. 물론 수능 문제는 내신 시험의 문제 유형과는 다른 면이 있습니다만 이를 자주 접하게 하고, 수능만을 위한 공부를 따로 하지 않도록 해 주는 곳이 좋습니다. 내신 공부와 수능 공부가 분리되면 공부량이 두 배로 늘어난다는 것을 기억하십시오.
4) 질문을 잘 받아주는 학원이 좋습니다. 최초의 단권화 작업 중에는 어떤 문제를 골라내야 하는가를 몸에 익히기 위해, 각 문제마다 '이 문제는 왜 나온 것일까. 이것은 일회성 암기형 문제인가 개념을 확장시키는 문제인가'라는 것을 계속 고민해야 합니다. 이는 선생님께 물어보는 것이 가장 좋습니다. 이 때문에 인터넷 강의보다는 오프라인 학원을 택하게 됩니다. 또 대형학원보다는 5-7명 내외의 수업을 하는 곳이 적절할 것입니다(사실 요즘 대형학원은 드뭅니다). 가장 좋은 것은 학원 강사급이 과외를 해 주는 것이고, 그 다음으로는 일반 과외(대학생 과외), 마지막이 오프라인 중형 학원이라 하겠습니다.
5) 숙제 분량이 알맞은 학원이 좋습니다. 단권화 공부를 하다 보면 학교 공부, 학원 공부와는 다른 진도와 교재를 다루게 되므로 일반 학생에 비해 공부량이 두 배 이상이 됩니다. 이 상태에서 학원의 숙제마저 많다면 학생은 제일 먼저 단권화 공부를 포기합니다(학교는 시험 성적 때문에 포기할 수 없고, 학원에서는 선생님이 계속 감시하니 공부하게 됩니다) 학원 공부와 숙제, 학교 숙제, 단권화 공부를 포함해 일주일 15시간(졸거나 딴 짓한 시간 제외) 이상 수학 공부를 하게 되면 학생이 지치게 되므로 이를 잘 배분하시기 바랍니다.
학원 공부와 단권화 공부가 서로 겹치지 않게 하는 방법의 하나로 학원 진도와 단권화 진도의 선후를 조정해 하나가 다른 것의 복습이 되도록 하는 것도 좋습니다.
보통 학원에서는 고교 과정을 중3부터 본격적으로 공부하게 됩니다(본격적인 공부는 연습문제까지 푸는 것을 의미합니다) 학원에서 진도를 나간 뒤에 그 복습 공부 때 단권화를 하는 것입니다. 이렇게 하여 고교 1학년 수학을 중3겨울 방학말 때까지 단권화를 마치도록 합니다
고교에 진학하면 대부분 학원을 바꾸게 되는데, 이 때는 단권화 진도가 학원 진도와 동일하거나 더 빠르게 나가면 좋습니다. 학부모님들은 '학원진도는 대개 고1년생에게 고2-3학년 과정을 가르치는데 어떻게 1학년 때 학원 진도보다 단권화 진도가 빠르냐'라는 의문이 들 겁니다. 중학생 때까지는 대부분의 학원이 선행 위주의 수업을 하지만 고교부터는 다릅니다. 고교부터는 복습을 위주로 하는 학원, 개념 위주로 하는 학원 등 다양한 학원이 있고 학교의 진도 자체가 매우 빨라 학교 진도만큼 나가기도 쉽지 않습니다 (대부분의 학교가 고 2학년 말까지 고3 과정의 중반 이상을 나가게 되므로 매우 빠르게 나갑니다) 그러므로 학원만 잘 선택하면 단권화 진도가 학원보다 빠르게 될 수 있고(물론 단권화 진도는 학교 수업보다는 빠르게 나가는 것이 좋습니다) 학원 공부가 단권화 공부의 복습으로 활용될 수 있습니다. 이런 것이 가능하려면 학생이 스스로 책을 이해하는 능력이 높아야 하고, 학원 선생님께 현행 진도가 아닌 다른 진도의 문제도 쉽게 물어볼 수 있어야 합니다
학원과 단권화 공부 둘 다 포기하기 힘든 것이므로 조화를 이루도록 노력하는 것이 중요합니다. 사실 단권화 공부에는 학원보다는 진도를 자율적으로 할 수 있는 과외가 더 어울립니다. 그런데 문제 출제의 의의까지 아는 과외 선생님(특히 대학생 과외 선생님)은 드물기 때문에 좀 아쉽습니다
단권화 공부는 결과물인 노트 자체는 초라해 보여도 그 만드는 과정에서 얻는 것이 매우 많습니다. 무엇보다 스스로 공부해 나가고, 계획(공부 시간, 장소, 진도 계획)을 세워 공부하는 습관이 생기고, 처음 보는 것을 혼자서도 공부할 수 있다는 자신감이 생깁니다. 이 자신감은 대학 공부와 성인이 되어서의 여러 시험(고시 공부, 자격증 공부 등)에 영향을 끼칩니다.
대부분의 사람은 단권화 공부의 장점을 대학교 때 알게 되며, '이걸 고교생 시절에 알았다면 얼마나 좋을까'라는 후회합니다. 수능의 경우에도 재수생은 거의 단권화 공부로 성적을 올리게 됩니다. 재수생의 공부 경험을 들어보면 대부분 ‘첫 번째 수능을 보고나서야, 수학 공부에서는 잡스럽게 많이 볼 것 없고 00, 00 교재만 골라 0번 이상 반복해 푸는 것이 낫다는 것을 알게 되었고, 재수 때에는 그렇게 공부해서 점수를 올렸다. 고3 때는 남들이 보는 것은 다 봐야한다고 생각했지만 그건 시간 낭비였고, 실제로 보지도 못 했다’는 말이 많습니다.
단권화 공부를 고교 시절부터 시작하시길 권합니다.
작성 imahun@naver.com 신상훈
피드백은 위의 메일주소로 보내주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1등 고래 2등 기린3등 거북이
-
그 때 수탐 만점권까지 갔음을 어느정도 느끼긴했어
-
인생을 바꾸는 [고1~2대상 '무료' 비대면 학습멘토링] 0
안녕하세요 30대 직장인입니다! 재능기부의 형태로 봉사하고자 하는 마음으로...
-
잔다 3
너네
-
학교에서 모의고사 칠때만 유달리 시끄러운 친구있는데 어떻게 해야할까요? 항상...
-
3월에 미적하지말라고 했다가 미적맘들 ㅈ랄했었는데 이제와서 후회된다 이러는거보면...
-
온지 8일 됏는데
-
초코민트 요리모 디시콘!
-
덕코 안 드림 6
님들이 줘
-
ㅈㄴ맛있음 그냥먹어도맛있고 렌지돌려먹어도맛있고 치즈넣어도맛있고 삼각김밥이랑먹어도맛있고
-
유일무이 명문대학고려대학교에 가게 되어 영광입니다 .
-
절!대로 안됩니다.
-
그냥 평가원이 봐주고 있는것일 뿐
-
쌌다 9
똥
-
수학은 발상적이다라는 말이 뭔가 좀 애매한거 같음 23
존나 발상적인 풀이여도 그런 관점을 꾸준히 생각하다 보면 어느순간엔 당연하게...
-
이렇게 뭔가뭔가 상황안좋을때 23수능 재림했음 항상 그래서 올해 입결 누백상...
-
덕코로 뭐 문상이나 책 같은거 살 수 있음? 줄 수도 있는걸로 아는데 문상이나 책...
-
요근래 학생들 중간고사가 끝나 과외를 많이 알아봅니다!! 과외알바를 생각하시는...
-
확통 2
중복순열, 조합 잘못하면 확률 부분 못함? ㅈ됐네
-
여기사람들은 13
22 30을 푸네요 헐...ㄷㄷ 역시 난 저능아야...
-
하디 비율관계 0
계속 까먹네 8개 외우는게 안되냐
-
개념만 알아도 1등급 맞을 수 있는 과목이라고 생각해서 퍼즐 같은 거 잘 맞는...
-
이 나이에 수능 다시 보는 내가 ㄹㅈㄷ
-
점메추좀
-
제가 푼 방법 20
전 오히려 g-f를 생각 모댓는데 그렇게 푼 분들이 많은 듯 미분가능이나 연속성을...
-
못알아쳐먹는 내 머리가 너무 밉다 너무 미안해서 더 물어보지를 못하겠다 지금...
-
앱스키마 0
올해 해설 분권해준거임?
-
예전에 10번 문제에서 20분 박고 틀린 이후로 고쳐짐 그전엔 모든문제를 개특수 그래프로풀었음
-
뭐야 내 투데이 왜이래 16
아무리 메인이라도 좀 이상한데 어디 수출되서 박제당했나
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
과외가 기하급수적으로 늘면서 저도 더 좋은 선생님이 되고자… 유명한 인강들을 틈틈이...
-
기하 개념 나가는데 유형문제까진 ㄱㅊ 근데 단원문제만 들어가면 문제 접근...
-
시중 n제들보다 훨씬 참신하고 좋은 문제들이 많은데 가격은 1/3인게 말이안됨......
-
걍 둘다 할 줄 아는 게 좋긴 한 듯 무기가 많으면 좋은 거니까
-
나만 유난히 못 견디는 거 같음 멘탈 나가서 며칠씩 날릴 때 마다 현타옴 그렇다고...
-
대서울대
-
왜 호텔 밖에 없어...
-
윤어게인 1
님들 준킬러 대비해려는데 준킬러 모음 기출을 먼저 할지 4규를 먼저 하는게 맞나요?
-
근데 메가스터디는 해설강의를 찍으면 적어도 4점 전문항은 올려줘야지 강사 지...
-
수학만 해야하나 0
이제 어싸 매주 한권씩 쳐내야하는데 이해원s1미적도 곧 나오는데 문제는 하사십...
-
사설실모문학 1
존나틀리는데 걍 정답근거만체크하고 넘어가야함?
-
사실 수학도 마찬가지 각잡고 개념 공부하면 사실 2주도 안 걸리는데 저도 고2때...
-
3모 4등급나왔고 그후로 기출 3회독정도해서 교사경하려는데 데이별로 나눠져있다던데...
-
어떻게 다 이렇게 열심히 하지 그나마 고2 내신 봐주는 애가 덜 열심히 하는데 다른...
-
공통비상 6
공통 문제 암것도 못풀겠네 미적 다 맞는걸 목표로 달려잇
-
악질이네
-
진짜 있으면 아이큐 몇일까
-
유베도 55분컷 만점은 안 될 듯 ㅅㅂ ㅋㅋㅋㅋㅋㅋㅋㅋ 진지하게 55분컷 만점은...
많은 도움이 됐습니다