[한권으로 완성하는 수학] 3월 모의 30번 적중
게시글 주소: https://orbi.kr/0002832139
ㅋㅋ
아실수도 있지만
일단 나왔으니 자랑은 할게여 ㅠㅠ
수학2의 심화특강28의 개념내용이 그대로 나왔네요..
책의 수능 부분인 Critical Pount 11 (밖의 점에서 그은 접선)으로 마무리하는 문제인데
중간에 심화특강28의 내용이 많이 가미되어있는 형태입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잠을 못잔 건 내탓이 아니야 진짜)다
-
뭐가낫나요 후자는 일단 1-1 학점 3.3입니다
-
노베 장점 개 많음 ㅋ
-
나만 망한 것 같네
-
섯다 재밌네 9
ㅋㅋㅋ
-
크럭스 진짜 사랑합니다
-
의외로 근본 탑 1
게이
-
ㄱㅇㅇ 3
-
아 졸려 잘거야 0
-
저는 탑미드
-
기상 9
뭐지
-
안녕히 주무세요르비
-
자꾸 누가 내 말투 채팅으로 따라함 이건아니야.. 아이고 헐
-
시발 건동홍 너네가 돌아야 그 밑에있는 우리도 돈다고 진짜 제발 빠지라고 제발 제발...
-
제 목소리를 평가해줄 사람이 없음
-
재수생입니다. 물1화1이었는데 수능보고 벽느껴서 사탐런(사문.생윤) 박았습니다....
-
흠...주제를 생각할수가 없군 그냥 뻘글이나 쓰련다
-
두시간자겠네 하...............
-
어릴때 얇다고 놀림을 엄청 받아서 억지로 중딩때 굵게 낼려고 했더니 변성기 이후에...
-
기대할게요
-
나:멍멍멍멍멍멍~~~(사람 그만좀 물라는 뜻) 강아지:멍멍멍멍~~(ㅈ까라는 뜻)
-
수리논술 미기확 전부 골고루 나오는 대학 어디어디 있나요? 인서울 이상에서요....
-
돌고래랑 대화 불가능
-
허리아퍼잉 3
잉
-
혼자 듀얼모니터로 롤하면서 왈라라라라랄 오르비잠깐보고 아이고. 헉. 이게나야~...
-
취침모드 드가자~
-
ㅎㅎㅎㅎ
-
115가 되고싶다
-
열등감을 어카지 0
비교하는걸 멈춰야되는데 그게힘들긴해..
-
세계랭킹 10위 안에드는 대학생은 과외시급 얼마 받는게 적당하다고 생각함? 3만 3.5만? 4만?
-
좋아하던 소설이 완결했었거든요...
-
GTA5 스토리모드 했음뇨 온라인은 할수록 짜증만 늘음
-
자야 3
해야지
-
울지 마요 8
괜찮아요
-
옯붕이들은 코노 와타시가 만족할만한 야식을 내오도록
-
야식 머겄음 2
스팸마요주먹밥(수제)
-
고2 모고는 1~2오갔고... 결방학때 그냥 과외쌤이랑 같이 5개년 기출 풀면서...
-
잔다 5
웅.
-
제발 14명만 빠져주세요 간곡히 부탁드립니다.
-
메인 6수 2명 0
나란히 23수능만 거른게 ㅈㄴ 신기함 ㅋㅋ 우연의 일치인가
-
화요비 2
같은사람만나고싶다
-
꼭 사야할 레어가…
-
내가 셋셀 테니 4
넌딱
-
너의 미소가 조사대상 11
예이예이예이
-
우르프나 해 7
우르프 최적화야 지금
-
늦버잠 1
내일은 10시반에 일어나야징
-
기만질 하고 싶다 11
ㅈㄱㄴ
-
잘자요 16
오늘 제가 징징 거리는거 받아줘서 고마웠어요 내일은 좀 말짱한 정신으로 돌아올게요...
옹..
제가 하던 책 믿고싶어여 ㅠㅠ 이런 글보면 흔들림 !!
이 책 얻어갈 내용많나요? 가격이 쎄서 선뜻 구입하기 망설여짐..
아 .... 나 이거 이계도함수구해서 풀었다가 틀렸는데 ㅜㅜ
전 왜 이계도함수 구해서 맞았죠?
이상하네...?
아래로 볼록, 위로 볼록과 관련된 부등식이므로 수학적으로 이계도함수 해석도 당연히 가능할 수밖에 없습니다. ㅎㅎ
그래프가 위로 볼록하면 되므로 이계도함수를 구해서 이계도함수가 0보다 작으면 성립하는거 아닌가요 ?
그렇게 해서 답을 구했더니 24가 나오든데...
그풀이는 논리적 비약이 있는 풀이지요.
분명 위로볼록하면 위의 부등식을 만족하지만
위의 부등식을 만족한다고 다 위로볼록일까요?
그렇게 되려면 "임의의 t에 대해서"라는 말이 추가되면 됩니다.
sign님께서는 식을 잘분석했지만
필요충분관계를 잘못이해하고 계셔서 그러한 실수를 하셨습니다.
난만한님 그런데요 저 Sign분께서 의도한 답이되려면 '임의의 t에 대하서'가 추가되면 된다하셨는데
왜 그런거죠 이해가 잘 안되네요..
그게 추가되도 모든 실수x에 대하여 라는 말이 있어서 좀 이상한거같은데..
저기 위의 한완수 수학2 서술과정을 보면
"위로볼록이면 아래의부등식을 만족한다"
라고 되어있고, "접선으로 해석"하는 발상을 설명하고 있습니다.
또한 이번 교육청문제에
"접선으로 해석"하는 발상이 출제된것이구요.
이제 이해가 됬네요 ㅎㅎ 감사합니다 !
참고로 저도 한완수 수2 샀어요 ㅋ
ㅎㅎ 공부열심히해서
꼭 대학교합격해서 멋진후기남겨주세요~!
혹시 연세대오면 제가 밥사드릴께요~~(후배니깐!)
미분계수와 평균변화율 비교하는 일반적인 문제...(퍽
이계도함수만구하고 그냥했다가 틀렸네요 ㅋㅋㅋ
이계도함수구한다음에 0,0이랑 2,0따졌어야했는뎀..ㅠㅠ
앞에서 멘붕하다가 접선의 방정식이란걸 모르고 뻘짓함 ㅠ 저거 그냥 y절편이 0인 접선 2개가 접할때 x좌표 구하는 거였는데 ㅠ 시험끝나고 생각나다니 ㅜ
저도 님처럼 생각하고 풀려했는데 답지는 약간 다르게 설명한것 같더라구요.. 애초에 (0,0)과 (2,0)에서 그은 접선을 생각했는데 답지가 잘 이해가 안되네요 ㅠㅠ 님이 생각했던 방향으로 풀려고하면 접점의x좌표를 직접 구하기도 힘든것같구요...... 어느부분이 잘못된걸까요?? 누가 속시원하게 설명좀해주세요!! ㅠㅠ
미분계수 = 평균변화율 이렇게 식 놓고 하면 쉽게 접점의 x좌표가 2/3 인거 알수 있습니다 x=1 에 대칭 이므로 x = 4/3 도 또다른 접점입니다. 이를 통해 답을 구할 수 있습니다.
결국 이계도 함수구해서 위로볼록일 때 하면 틀리는 내용 아닌가요?