[한권으로 완성하는 수학] 3월 모의 30번 적중
게시글 주소: https://orbi.kr/0002832139
ㅋㅋ
아실수도 있지만
일단 나왔으니 자랑은 할게여 ㅠㅠ
수학2의 심화특강28의 개념내용이 그대로 나왔네요..
책의 수능 부분인 Critical Pount 11 (밖의 점에서 그은 접선)으로 마무리하는 문제인데
중간에 심화특강28의 내용이 많이 가미되어있는 형태입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친해지기말고 얼굴 익히기용으로..
-
ㅇ
-
시대기출 확통 2
구할 방법이 없을까요... ㅜㅜ
-
수2노베탈출후 0
3모 에피 따야지
-
군면제/정공 가능함 어느정도의 정신병인지 개씨발 그냥 좆같음 ㅇㅇ
-
기출문제 푸는데 쉬운거도 안풀린다 사탐마렵네
-
따로 주간지같은거 푸심? 이거 커리큘럼 강의만 듣고 풀면 양이 좀 적어보여서 하루...
-
이렇게 하는사람있음? 쫑 시즌2 들어가기 전까지 뉴런기출 다해야되는데
-
덕코 1
주세요
-
노래 잘하고싶네 3
밴드부 보컬 보니깐 걍 보법이 다름 그정도로 해보고 싶네
-
주식 4
쌀임
-
저랑 같은 시기에 근무했던 분들 아웃풋 저-(대학라인 2라인 올림) 언니1-(시립대...
-
주식 0
하따로 개많이 벌었음 다시 탔는데도 또 먹여줌 레전드
-
레어 팔아요 2
선택만 해도 3.1퍼센트의 수험생이 될 수 있는 가성비 ㅆㅅㅌㅊ 과목임
-
확통 단점 3
선택과목 얘기 나올때마다 왜 확통을 선택했는지 변명해야함
-
막 이르케 이르케 하면 풀려 님만 아니라 남들도 그래요 ㅅㅂㅇ
-
설의 지역균형 수시로 가기 vs 정시로 조선대 의대 가기
-
대학커뮤니티 노크에서 선발한 가천대 선배가 오르비에 있는 예비가천대학생들을 돕기...
-
삼일한 2
삼일에 한번 샤워하는데 ㄱㅊ?
-
요루시카 빼고는요
-
원하는 좋은 사람 나타날때까지 난 잠시그녈지켜줄뿐야 3
아무것도 바라는 것 없기에 그걸로도 감사해 워어 언제든 필요할땐 편히 날 쓰도록 늘...
-
안녕하세요. 황성찬입니다.오늘은 인문 논술 합격이 실력인지, 운인지에 대해...
-
처음으로 레어 함 사볼까 했는데 레어상점?? 들어가봤는데 뭐라해야되지 그,,...
-
빵만 맛있고 내용물은 평범
-
대학에서 대학공부 하는것보다 재종에 처박혀서 브릿지 서바 강k 벅벅하는게 더 재밌을것같음
-
알콜은 만들기가 너무 쉽고 담배는 너무 역사가 오래돼서 현실과의 타협인 듯 돈 주고...
-
설대내신반영이 0
내신은 1점대인데 생기부는 메디컬 생기부에 이수과목도 전부 이과관련 과목들인데...
-
공통만 몇분 잡고 풀어야하나요? 통통이에여
-
수리논술 유홍조 2
들으려고 하는데 수업 좋나요?
-
재수생, 작수 생1 45점 백분위 96 국수가 심각한 상태 <<< 특히 미적...
-
오부이들 주량 얼마임 31
본좌는 소주4병침 나보다 잘 마시는 사람잇서?
-
말 개 잘통할듯
-
재종에서 떠드는것도 이해안되는데 수업시간에 대화하는건 ㄹㅇ 뭐지 단과도 수업시간에는...
-
수학 실수를 척결하겠음 ㅋㅋ
-
유출스포라 100% 정확한건 아닌데 사이토 케이이치로 감독으로 26년도에 나온다네요
-
영원히 현역 하고 싶음
-
다들 전교 4-5등 했다는데 나만 좆찐따지
-
개꿀맛
-
밖에서 로그인한채로 오르비함 닉까지 봤는데 밝히진 않겠음뇨
-
댓글 써주세요
-
나는 8명 만나는 것도 힘든데 나 빼고 7명은 모든 과 애들, 선배들이랑 다 친해짐...
-
전 하고 싶은 직업이 의사였어서 어쩔 수가 없었음 님들은 머ㅓ가 동기부여가 되셨었나요?
-
매직키보드+애플펜슬 매직키보드 쓰면 필기 절대 못함... 뒤로 접히지도 않고 각도도 애매해서
-
무물보 2
암거나
-
축구하면 나지 2
ㅇㅇ
-
생명이 백분위에서 물리보다 유리해도 물리가 내스타일의 과목같아서 "좋아하는 마음"이...
-
ㄹㅇㅠ
-
부산,경북공대 과탐 가산 몇퍼로 풀린지 아시는분?. 0
계시나용?
-
슬슬 결정해야할 것 같습니다 수학은 미적분 그대로 할 것 같은데 과탐 생1 지1...
옹..
제가 하던 책 믿고싶어여 ㅠㅠ 이런 글보면 흔들림 !!
이 책 얻어갈 내용많나요? 가격이 쎄서 선뜻 구입하기 망설여짐..
아 .... 나 이거 이계도함수구해서 풀었다가 틀렸는데 ㅜㅜ
전 왜 이계도함수 구해서 맞았죠?
이상하네...?
아래로 볼록, 위로 볼록과 관련된 부등식이므로 수학적으로 이계도함수 해석도 당연히 가능할 수밖에 없습니다. ㅎㅎ
그래프가 위로 볼록하면 되므로 이계도함수를 구해서 이계도함수가 0보다 작으면 성립하는거 아닌가요 ?
그렇게 해서 답을 구했더니 24가 나오든데...
그풀이는 논리적 비약이 있는 풀이지요.
분명 위로볼록하면 위의 부등식을 만족하지만
위의 부등식을 만족한다고 다 위로볼록일까요?
그렇게 되려면 "임의의 t에 대해서"라는 말이 추가되면 됩니다.
sign님께서는 식을 잘분석했지만
필요충분관계를 잘못이해하고 계셔서 그러한 실수를 하셨습니다.
난만한님 그런데요 저 Sign분께서 의도한 답이되려면 '임의의 t에 대하서'가 추가되면 된다하셨는데
왜 그런거죠 이해가 잘 안되네요..
그게 추가되도 모든 실수x에 대하여 라는 말이 있어서 좀 이상한거같은데..
저기 위의 한완수 수학2 서술과정을 보면
"위로볼록이면 아래의부등식을 만족한다"
라고 되어있고, "접선으로 해석"하는 발상을 설명하고 있습니다.
또한 이번 교육청문제에
"접선으로 해석"하는 발상이 출제된것이구요.
이제 이해가 됬네요 ㅎㅎ 감사합니다 !
참고로 저도 한완수 수2 샀어요 ㅋ
ㅎㅎ 공부열심히해서
꼭 대학교합격해서 멋진후기남겨주세요~!
혹시 연세대오면 제가 밥사드릴께요~~(후배니깐!)
미분계수와 평균변화율 비교하는 일반적인 문제...(퍽
이계도함수만구하고 그냥했다가 틀렸네요 ㅋㅋㅋ
이계도함수구한다음에 0,0이랑 2,0따졌어야했는뎀..ㅠㅠ
앞에서 멘붕하다가 접선의 방정식이란걸 모르고 뻘짓함 ㅠ 저거 그냥 y절편이 0인 접선 2개가 접할때 x좌표 구하는 거였는데 ㅠ 시험끝나고 생각나다니 ㅜ
저도 님처럼 생각하고 풀려했는데 답지는 약간 다르게 설명한것 같더라구요.. 애초에 (0,0)과 (2,0)에서 그은 접선을 생각했는데 답지가 잘 이해가 안되네요 ㅠㅠ 님이 생각했던 방향으로 풀려고하면 접점의x좌표를 직접 구하기도 힘든것같구요...... 어느부분이 잘못된걸까요?? 누가 속시원하게 설명좀해주세요!! ㅠㅠ
미분계수 = 평균변화율 이렇게 식 놓고 하면 쉽게 접점의 x좌표가 2/3 인거 알수 있습니다 x=1 에 대칭 이므로 x = 4/3 도 또다른 접점입니다. 이를 통해 답을 구할 수 있습니다.
결국 이계도 함수구해서 위로볼록일 때 하면 틀리는 내용 아닌가요?