3차함수 문제 풀어보세요~^^
게시글 주소: https://orbi.kr/0002798437

작년에 직전모의고사에서 통계를 해보니 정답률 약 60%였습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
주안 가르시아 뭐노 ㅋㅋㅋㅋ 1 0
다막아뿌노
-
죽고시픈데어카지 1 0
ㅜㅡㅠㅡㅠ
-
권은비 일본 공연 꼭 노 영상 0 0
tiktok.com/8Wx9CdNm 현재 틱톡에 영상 박제되서 안지워지는중ㅋㅋ
-
테닝하고 싶다 4 0
함 하까
-
라면끓이는중 2 0
ㅋㅋ
-
권은비 일본 공연 꼭 노 영상 0 0
tiktok.com/8Wx9CdNm 현재 틱톡에 영상 박제되서 안지워지는중ㅋㅋ
-
왜 지금 일어났지 하.. 3 0
ㅅㅂ
-
좋은 이유는 소화가 빠름
-
금발햇음 2 0
굿
-
더프 현장응시 안하고 대성 사이트에서 사서 따로 봐도 성적표 받을 수 있나요??
-
심시미한테 5 0
따뜻하게 대해주새요 ㅜㅡㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜ
-
기차지나간당 7 0
부지런행
-
반수고민 6 0
현역 56 57 5 64 74 재수 75 84 5 87 56 삼반수생각중인데 포텐...
-
심시미 3 0
잘꺼에요
-
엘클 4분만에 3골 0 0
미쳤네
-
이투스 이러면 달에 오만원 페이백인가 12 0
8만원 적립해도 월에 5만원이 최대인거맞나 아니에요
-
초 심심한 3 0
곤듀
-
사실 학부생1학년으로 가고싶다는 강박이 있어서 3수한건데 삼수했는데 스카이 못갔고...
-
ZAMIANONDA. 5 0
씨발거... 12시에 자겠다고 큰소리 쳐놨더니만
-
언제자지 1 0
피부과만 갔다와도 1시는 될거같은데
-
사물함에 20×35하면 700 맞죠? 전 계정까지 합치면 1000개 걍 넘을듯
-
잠이 안오네 2 0
-
?
-
님들 연애하고 싶으면 2 0
유튜브 그냥 필름 쳐서 봐보셈 연애 현실임
-
자기싫은데 저녁에 술약속있움 3 0
하 개늦게일어날거같은데
-
고조원건제 의대가 더 집에 가까워도 을지대인가요
-
아직 잡힌 건 아닌데 교재에 필기같은거 좀 해서 어떤식으로 할 지 보여주고 레테도...
-
로블록스 7 0
재밌는거없나
-
맥모닝 드가야겠음 2 0
3개 쳐먹겠음
-
난일을하기싫어 7 0
그래도이런생활에안주하면안돼
-
잔다 3 1
-
북중미 월드컵에서 북미 월드컵으로 바뀔수도
-
최근 일이주 사이에 메인 6 0
10번 넘게 보낸 것 같은데 이게 맞냐
-
https://namu.wiki/w/%EC%98%A4%EB%A5%B4%EB%B9%84...
-
이거들어바 0 0
굿
-
곧 생길 월드 트렌드 1 0
'직업을 잃거나 일을 하지 않는 것을 두려워하지 마세요.' 가 전세계적 트렌드가 될...
-
재미없어잉
-
다시 독일을 위대하게 만들어야 됨
-
일관성 ㅁㅌㅊ
-
많은거 바라지 않음 서성한 스나 중경외시만 가자....
-
월드컵 경기시간에 딱 아침자습하겠네 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
진짜 아쉬운건 한국 월드컵 경기가 오전 10시 정도임 2 0
저때 술마시기는 좀 그럼+뒷풀이도 조금 그럼
-
의대 목표 수시 재수 최저러인데 아무리 국어 투자해도 수능에서 1 맞을 자신이...
-
다시 올게
-
솔직히 기숙에서 4 0
월드컵 틀어줘야 한다고 생각함 손흥민 마지막 월드컵인데 이걸 안 틀어줄 순 없는 거임
-
ㅇㅇ 아침운동 감
-
과학탐구 재능 없으면 열심히 공부해도 아래 문제 푸는데만 1시간 가까이 걸릴텐데...
-
저격했는데 왜 메인 안감 1 0
그냥 셀프 디스만 존나 한 사람 됐잖아 이 양반들아 개 시발
-
오프라인 친구의 필요성을 못느낄때가 있음 남 눈치도 안보고 24시간 감성없이...
-
ebs교재집필 전현직 교사와 4억원대 수능문항거래혐의, 메가스터디 현우진 등 재판행...
3번인가요??
정답입니다.^^
근데 저 궁금한게 저 ㄷ을 구할 때요.. f(x)=x^3-x^2-x+1이 나오는데 이 식에서는 f(1)=0인데 'f(1)<0이면' 될려면 x축을 위로 올리는 건가요?? 그래서 f(x)가 전형적인 삼차함수의 개형인데 근이 2개인 곳에서 x축을 위로 올리면 근이 3개일 수도 1개일 수도 있어서 그런 건가요??
ㄷ선지의 핵심을 잘 짚어내셨네요. 함수 f(x)를 들어 올리면 1,2,3개의 근을 모두 가질수 있기때문에 틀린 것인데
올바른 풀이는
ㄱ.에서 f(1)=f(-1)이죠? 그러고, f '(1)=0입니다. 따라서 f(x)=(x-1)^2(x+1)+a(단, a는 실수)
라고 놓고 상수 a의 값의 변화에 따라서 ㄷ선지를 해석하면 됩니다.
3번인가요?
정답입니다.^^
좋은문제 감사합니다 ^^
33
정답입니다^^
2번인가요? 낚인거 같은데 뭔지 모르겠네요
오답입니다. 함수의 극한에 대해서 좀 더 생각해보시길 바랍니다.^^
으악 잘못썼네요.
1번인가요......?
으악..ㅠㅠ 오답이에요.. ㄱ은 함수의 극한에 관한 선지. ㄴ, ㄷ은 삼차함수에 관한 선지입니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
3번요 ㅋㅋ f(x) = (x-1)^2(x+1)+f(1) 나오네요 ㅋ
정답입니다. 모범답안입니다.^^
1번?..
아 제 수학 좀 해야겠다.....
오답입니다.^^;;
조건에서 f 프라임 1이 0이라는거 말고 얻어낼 수 있는게 뭔가요 ㅠㅠ?
그게 있어야 풀릴거같은데 ㅠㅠ
ㄱ조건에 모두 답이 있습니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다
3번??
정답입니다^^
수리 캐허접인데 풀어보니 3번나오는데, 틀렸죠?
맞았어요 ^^
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수)
임을 이용해서 풀었다면 모범답안입니다.
f(x)=(x-1)^2(x+1)+k 로 하긴 했는데
첨에 f(x)=(x-1)(x+1)(x-a)+k 로 놓고 미분후 1대입해서야
a가 1임을 알아내서..
웬만한 분들은 걍 f '(1)=0 보고 바로 식 나오시는듯 하군요 ㅠㅠ
님처럼 푸신분들도 많아요^^;; 앞으로 잘알아두시고 써먹으시면 되는거에요 ㅎㅎ
계산 안하고 바로 생각해내는 사고 과정좀 알려주실수 있나요
ㄷ 풀때 그래프를 그려보면서 뒤늦게 자동으로 알게 되긴 하지만요..
삼차함수에서 도함수의 함수값이 0이라는것은 극솟값 혹은 극댓값을 의미합니다. 그 극값을 k라고 합시다. 그러면, f(1)=k, f(-1)=k 이죠? 즉 f(1)의 값과 f(-1)의 값이 같다는걸 유추할수 있습니다.
그럼 가장 쉬운 예로 k=0이라고 칩시다. 그러면 함수 f(x)에서 f(1)의 값은 x축에 접한 형태가 될것 입니다. 그리고, f(1)은 극값이므로 중근을 갖겠네요. 따라서 f(x)=(x-1)^2(x+1) 라고 유추할수 있습니다.
*) 왜 x축에 접하는 극값이 중근을 갖느냐?
2차 함수 y=(x-1)^2을 생각해보시길 바랍니다.
흠냐 답 ㄱ,ㄴ인가요?
정답입니다.^^
이과 문제로 내기에는 넘 쉬운것 같고 문과 문제로 내면 딱이겠네요~ ㅎㅎ
그래서 작년 SHC모의고사 (나)형에 출제됬던 문제입니다.^^;;
5번
오답입니다.^^
4번? 맞으면 ㄴ이 왜 틀린지 설명좀 해주실수 있을까요?
정답은 ㄱ,ㄴ이구요
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
5번 맞나요
오답입니다^^;;
ㅠㅠ 힌트까지 주셨는데 개형 못찾았네요.. ㅠㅠ
중근 형태인지 극점 두개 인지 어떻게 판별하죠 ?...
중근형태인지 판별이라..
이런것입니다. 어떤 삼차함수 f(x)가 x=0에서 극솟값 1을 갖는다고 가정합시다.
그러면 함수 f(x)-1은 x=0에서 x축에 닿는 형태가 되겠지요?
이렇게 "닿는 형태"(느슨하게 말하여) 일때 중근이라고 유추할수 있습니다. (수학적으로 엄밀한 것이 아닙니다. 수능에는 이렇게 생각하면 상관없습니다.)
만약 x=0에서 그래프가 x축을 아래에서 위로 혹은 위에서 아래로 뚫고 올라갔다고 칩시다. 그러면 삼차함수 f(x)-1=x(ax^2+bx+c)로 방정식을 쓸수 있습니다. 물론, f(x)-1=x^3일수도 있구요.
*) 여기서 중요한 것. "닿는 형태" -> 2차, 4차 등의 짝수차항 다항식을 포함
ex) f(x)=x^2(x-2)^2
"뚫고 지나가는 형태" -> 1차, 3차 등의 홀수차항 다항식
ex) f(x)=x(x-1)^3
보통 수능은 3차, 심해봤자 4차함수가 나오는 점을 감안하시구... 왜 그런가 궁금하면 직접 그래프를 그려보세요.(네이버에 그래프 그리는 프로그램 쳐서 나오는것 하나 받아서 수식 입력하세요)
극점 2개인 것은 판별한다기 보단, 위에서 방정식을 만들어서 그래프를 그리다보면 자연스럽게 알수 있는 부분입니다. 다로 팁을 드리기가 애매하네요잉...
3번맞나요 ? 귓방망이님 책출간언제하시나용?ㅠ
아직 인쇄중입니다. 생각보다 오래걸리네요ㅠㅠ 기다려주신만큼 좋은 문제질로 보답하겠습니다^^
3번 맞나요??
정답입니다.^^
5번이 아닌가요? 그럼... 3번인가보네요...
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
ㄷ이 조금만 생각을 더했으면 1,2개 였을수도 있다는 생각을 못했네요 ㅋ 문제질 좋으시네요!
분수식의 극한이 극한값을 가진다는 사실에서 분모가 0으로 수렴하므로 분자도 0으로 수렴합니다.
따라서 ㄱ은 옳은 보기입니다.
또한 로피탈의 정리에 의해 f`(1)=0이고 f(x)는 삼차항의 계수가 1인 삼차함수이므로 보기 ㄱ과 함께 정리하면
f(x)=x^3-x^2-x+c입니다. (단, c는 임의의 상수)
따라서 ㄴ도 옳은 보기입니다.
그리고 f(x)는 x=-1/3일 때 극댓값을 가지므로 f(-1/3)=c+5/27로
f(x)가 세 개의 실근을 가질 조건은 c>-5/27입니다. 따라서 ㄷ은 틀린 보기가 됩니다.
그러므로 정답은 3번 ㄱ,ㄴ이 됩니다.
답은 3번!!
3번인가요??