수리굇수님들아 이문제좀 도와주세요
게시글 주소: https://orbi.kr/0002786492
수열[an]을 다음과같이 정의할때, 모든 n에 대하여 an>2임을 수학적 귀납법을 이용하여 보이고, an+1 -2<1/2(an -2)가
성립함을 설명하시오.
a1=3, an+1=1/2(an+ 4/an)
일반항조차 못구하겟네요..
수리굇수님들 알려주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재종 악몽 꿈 0
불켜놓고 자면 높은 확률로 악몽 꾸는 듯 대충 내용은 어느날 재종을 안 가고 집에서...
-
육군이면 집앞으로 갈 방법은 없죠...? 연고지복무병 모집 대상지역은 아니던데,,,
-
온리 수의대 지망생 4수 시작 선택과목 조언 좀 ㅠㅠ 0
4수 할건데 사탐, 확통을 해도 되는건지 그냥 정석대로 미적, 과탐을 해야 하는지...
-
예?
-
조금 외로운가 0
벌써 외롭다고
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
ㅠㅠ ㅠㅠ ㅠㅠ 김민정 나의 썩은 장기라도 가져가
-
술다깼당 0
구마완료
-
힘내라 샤미코
-
지금 시대인재 라이브 수강신청해서 들을 수 있나요.?
-
뭐 면접 점수 내신 점수가 영향을 줬는지 나보다 정시 환산점 이하인 애들은 최초합,...
-
화학 어렵다 2
어제 밤에 연등하면서 넋이 나가버림 ㅋㅋㅋ
-
이걸 동시에 하는 건 좀 모순적인 일일수도 있겠다 싶네요 고교학점제 취지가 진로를...
-
내 친구가 수능 만점받고 설의합격했는데 내가 좋아하는 사람이 내 친구한테만 모든...
-
고관절 스트레칭 0
-
남 안 될 거라 단정하고 처 말하는 심보가 대체 뭐임 정 존나 떨어지게 시발
-
학원 도착함 1
-
칠리콩까네 칠리콩까네
-
칠리콩까네 칠리콩까네
-
걍 이제 난 무적임
-
오늘일정 4
헬스장갓다가병원갔다가 두끼갔다가카공하기
-
ㅈㄱㄴ
-
??
-
출하싫 2
날씨 호달달
-
소신발언 7
아무리 좋고 뛰어난 강사나 선생님이어도 강의가 모든 학생의 만족을 충족하기 어려움....
-
이젠 1만원이라 국밥타령 못함...
-
얼버기 4
-
금살껄 2
라고할때살껄
-
가보자가보자
-
학원가는중 2
-
현역인데 미적 쎈 3회독 이틀 전에 끝내고 지금 수분감 하고 있어요 이정도면 많이 한건가요?
-
어디까지라고봄? 집은 경상도 어딘가.. 그냥건동홍가서새벽에서울가는데욕심인가싶어서써봄..
-
밤새고 어제 9시에 자서 6시에 일어남 1시간만 더 잘ㄲ
-
어느 학과가 대기업 취업에 더 유리할까요? 그리고 인하대 반시공 계약학과인가요?
-
기차지나간당 6
부지런행
-
핫도그하나 닭곰탕 한그릇 과자 한봉 비엔나 세개 메추리알 다섯개
-
작년 수능에서는 화작 0틀 백분위 91인데 6,9모에서는 하나씩 틀렸었습니다. 제가...
-
주식 들어가면 0
아오 내가 들어가면 쳐 내리네 ㅋㅋㅋㅋ
-
눈온당 0
-
출석부! 출석부 출석부! 지하철! 지하철 지하철! 공산당! 공산당 공산당! 진짜...
-
스타킹 1
찢기
-
이시간에
-
불면증.. 4
원하는 기상시간보다 45분이나 일찍일어나버렸다
-
잘까 4
흠
-
안자면 큰일날듯 1
옯붕이들 ㅂㅂ
-
2차 얼버잠 2
이젠 진짜 ㅃㅃ
-
동서연고. 1
무요.. 왜요.. 혼잣말이에요..
못알아 보겟어요.......ㅠ
1/2(an+4/an)에서 an+4가 a의n+4인가요 an + 4인가요?
an +4/an이요.. 분수임
an + 4/an 이란말이네요 ㅋ 띄어쓰기라도 해주셔야 알아볼듯 ㄷㄷ ㅋㅋ
아 그렇네요 ㅋㅋㅋ
못알아보실수있겟어요
푸는방법좀 알려주세요 ㅎㅎ;
지금 폰이라 잠시만요 ㅋㅋ 곧 풀이 올려드릴게요 ㅋㅋㅋ
감사합니다 비밀글로부탁드려요 ㅋ;
a1=3 이고 an+1 = an/2 + 2/an 이므로 a2=13/6 이됩니다
이걸 차례대로 대입해보면 an>0이란 사실을 알 수 있죠 (양수 + 양수 = 양수)
그럼 산술-기하평균에서 an+1 = an/2 + 2/an ≥ 2 임을 알 수 있습니다 따라서 an > 2 가 나오죠
그리고 an+1 -2<1/2(an -2) 에서 an+1 = an/2 + 2/an 을 대입하면
an/2 + 2/an -2 < an/2 -1 이 되고 이를 다시 전개하면 an>2가 됩니다 이는 처음 전제와 같죠
풀이가 확실한지는 모르겠지만 대충 답은 나오네요 ㅋ
그렇게푸는거맞는거같아요 ㅋ
그럼 하나만 더물어볼게요
그문제에 lim an은 어떻게구하죠 ㅎ;
an+1 = an = x 로 두고 주어진 점화식을 방적식으로 바꾸셔서 푸시면 답 나와요 ㅋ (편법이지만)
그럼 수렴하는 값은 x=±2가 나오는데 주어진 식에서 an>2라고 했으므로 수렴하는값은 2가 나오겠네요
감사합니다 ㅎㅎ
넹넹 ㅋㅋ
수리괴수는 아니지만 한번 풀어봣는데요.. n=1 일때 a1>2 이므로 성립합니다. n=k일때 ak>2 이라 가정해봅시다. ak가 양수이고 정의에 의하여 ak+1=1/2(ak+4/ak) 인데 우변에서 산술기하에 의해 좌변 ak+1 > 2 이므로 수학적귀납벌을 통해 모든 n에 대하여 an>2 임을 증명햇네요.
an+1=1/2(an+4/an) 에서 양변을 -2 하고 정리해보면 an+1-2=1/2 (an-2)(an-2)/an 이고 즉 an+1-2 = 1/2(1-2/an)(an-2) 로 표현할수 잇어요. 이때 모든 n에 대하여 an>2 이므로 0 < (1-2/an) < 1 입니다.
즉 an+1-2=1/2(1-2/an)(an-2)에서 0< (1-2/an)< 1 이므로 an+1-2 < 1/2(an-2) 가 성립하네요.
오랜만에 풀어보는거라.. 혹시 틀린거 잇으면 알려주세요 ㅠㅠ;
틀린거없으신거같아요 완변한데요 ㅋ
하나만 더 질문할게요
lim(n은무한으로)an을 방금제가물어본 문제의 결과를 이용하여 구하는거예요. ㄷㄷ
0 < an+1-2 < 1/2 (an-2) < ... < (1/2)n승 × (a1-2) 에서 n을 무한대로보내면 위 부등식에서 맨왼쪽항과 맨오른쪽항이 0으로 수렴하므로 샌드위치정리(?)에 의해 an+1-2도 0으로수렴하고 an+1, 즉 an은 2로 수렴하네요
님하야 이거 학원 논술숙제자나여 ㅋ
네ㅠㅠ 문제보고 30분넘게고민하다가 모르겠어서 질문했어요 ..
헐 논술문제시면 저처럼 푸시면 안되요 ㄷㄷ
편법이 들어가있어서;;;;; 우선 귀납적방법도 아니구요 ㅜ
그래도 방법은알았으니 더고민해보고 풀어볼게요 ㅎ
이거 옆에 지문보고 그지문바탕으로 쓰셔야할텐데,,
근데 이거 lim(n무한대) an 답은뭔가요?
서메다니시는 동지분 하이여답은2요
맞았넹ㅋㅋ
an-2를 bn으로 하고 뭐어케어케서술은했는데
결국엔 답구할때는 귀찮아서 알파설정해서 방정식 계산해버렸어요ㅋㅋ
뭐야 이거 서메 논술 문제 숙제 아님?ㅋㅋㅋㅋ
논제1번의 2가지질문 모두 수학적귀납법을 활용하면 쉽게 풀립니다.
그리고 일반항 구해서 극한값 구하는문제가아니라 제시문(다)에 의하면 극한과 부등식-> 샌드위치 정리를 활용하는것이 맞을거에요.
논제1번의 a(n+1)-2<1/2(an-2) 을 활용하여 샌드위치 만들면 된답니다.
lim an =d 라 설정하고 방정식풀면 0점일겁니다;
an이 수렴하는지 발산하는지 모르는상태에서 그렇게 수렴한다고 정해버리면;
bn을 설정하고 샌드위치정리에 의해 lim an이 수렴한다는것을 먼저 서술하였고
그후 방정식으로 풀었어요;;