시그마는 인테그랄 안밖을 마음대로 왔다갔다 할 수 있나요?
게시글 주소: https://orbi.kr/0002651043
시그마는 인테그랄 안밖을 마음대로 왔다갔다 할 수 있나요?
시그마랑 인테그랄 성질 좀 정리해주세요 ㅠㅠㅠ.
시그마로 이어진 수열은 1.덧셈과 뺄셈은 분배가능 2.상수는 앞으로빼서 따로계산가능 3.k=1부터 n까지의 시그마는
nc(c는 상수)
인테그랄은 상수 밖으로 나갈수 있고, 합차 나눠서 할수 있고(각각으로), 분할해서 할수 있고의 특징이 있잖아요..시그마도 그런지.. 두개가 헷갈려요 개념은 알겠는데,, 성질이 ㅠ.ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋ 갇혓다 0
흐에
-
당황했네 ㄷㄷ
-
수바는 맛있다 0
방금 풀고왔는데, 확실히 실모는 실모다. 다른 N제와는 맛이 다르다. 실모내놔
-
그냥어떻게봐도존나부정적으로밖에안보여 근데그런인생이라납득은가 개좆같은일만일어나는데뭐죽으라는거지
-
그건 바로 '나' 살기 싫음 ㅇㅇ 진심
-
학원묵시록 0
재밋나요
-
새벽에 그린 그림 10
15분컷
-
이랴!!
-
걍 사탐할까 5
나도 사탐런으로 꿀빨고 여초과 가고 싶다ㅅㅂ
-
못참겠대 0
아:: ㄸㅂ
-
ㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㄱㅈㅉㅇㅇ?
-
반수 관련 질문 6
2025 수능 백분위 화작 확통 생윤 사문기준으로 99(1) 70(4) 2...
-
여기저기 잘쓰고잇음
-
계속 생각난다 너무 맛있는데
-
치킨 맛있다 9
다 먹었으니 나 놀아줄사람
-
왜 맛있어보이지 5
아
-
진짜 연예인인줄요 팔로우했습니다 앞으로도 좋은 게시물 부탁드립니다 아니 얼굴빼고님...
-
를 찾습니다
-
걱정했는데 다행이군
-
50% 살아있거나,죽었거나 확통러라 계산이 되네 이게
-
가기로 한 팟에 납치됨 그때도 내가 살아있을까
-
미안하다 내 옷들아... 나처럼 어깨쳐지고 머리 큰 주인 만나서 너네가 못나보이는구나
-
으흐흐 일루와잇
-
형 자러간다 4
-
귀여워 2
-
나 오또케….
-
알려주세요.
-
ㅈ반고 학생에게 꿈과 희망을 주세요..
-
일루와요
-
두근규든
-
인증하기조은시간
-
좋은꿈꾸세요 오르비 14
-
저 특정해보셈 2
-
그때는 다니기가 그렇게 싫었는데 지금은 의지도 부족하고 돈도 없고 걍 자살마렵다...
-
?
-
아 ㅈ됐네 6
새터에서 귀엽다는 말 많이 들었는데 존못한남이어서 비꼼당한거냐? 시발
-
새벽기념 2
아무것도 안하기
-
매일못생긴도태남이라서
-
헤어지기로 했는데 이유 중 하나가 최근에 여행 갔을 때 내가 공황발작 크게 한 적...
-
합동 ㅇㅈ 0
재밌다
-
추가모집 외대글 1명 뽑는 과인데 5번까지는 빠질까요ㅠㅠㅠ 너무 절실해요ㅠㅠ 제발
-
와.. 젠지 클래식이던 시절이 있었는데.. 브리온 젠지전 복기라길래 멤버를 봤는데 미드가 비디디 ㄷ
-
성별 바뀌어도 똑같을듯 얼굴이 짱이다
-
현재 김승리쌤 커리를 타고 있는데 유독 문학부분에서 많이 틀려서 문학 유명한...
-
이시기에 개정 시발점으로 다시 시작해도 괜찮을까요? 작수 수학등급은 처참합니다 어3겨우 푸는정도에요
시그마가 곧 인테그럴..적분지렁이에요
시그마와 적분은 차이가 없어요. 애초에 적분이 구분구적법에 의해 얻어지는 특수한 꼴의 시그마에 극한을 취한 것임을 생각해보세요.
한편 시그마와 적분의 순서를 바꿀 수 있냐는 질문에는 조금 신중하게 답해야 합니다.
시그마가 만약 유한개의 항을 합하고 있다면, 이 경우 시그마가 함에 의해 분배된다는 사실을 '유한 번' 적용해서 얼마든지 순서를 바꿀 수 있습니다. 쉽게 표현하자면,
∑ ∫ f_k(x) dx
= ∫ f_1(x) dx + ∫ f_2(x) dx + ∫ f_3(x) dx + … + ∫ f_n(x) dx
= ∫ {f_1(x) + f_2(x)} dx + ∫ f_3(x) dx + … + ∫ f_n(x) dx
= ∫ {f_1(x) + f_2(x) + f_3(x)} dx + … + ∫ f_n(x) dx
…
= ∫ {f_1(x) + f_2(x) + f_3(x) + … + f_n(x)} dx
= ∫ ∑ f_k(x) dx
가 됩니다.
하지만 여기서도 추측할 수 있듯이, 무한합과 적분의 순서를 바꿀 수 있냐는 질문에 대해서 위와 같은 풀이는 더 이상 먹히지 않게 됩니다. 그리고 실제로 반례도 존재합니다. 무한합과 적분의 순서를 바꿀 때에는 그래서 상당히 신중해야 합니다. (물론 그래서 고등학교 때 이런 식의 문제는 직접 계산으로 땜빵 가능한 경우를 빼고는 등장하지 않습니다. 대학교 미적분에서는 구렁이 담넘어가듯이 얼버무리는 경우가 많고요.)
어머 정말 감사합니다ㅠㅠㅠㅠㅠㅠㅠ 그러면 유한합에서는 일단 두개는 서로 왔다갔다 해도 된다고 알고 있으면 되는 거네요.. 감사해요 진짜 ㅜ-ㅠ