(08년 6평)미분 함수 문제 하나 풀어주세요 ㅠ
게시글 주소: https://orbi.kr/0002641579

마플 342 (문과 미통기) 번 문제인데요 ㅠㅠ
삼차함수 f(x)=x(x-1)(ax+1)의 그래프 위의 점 P(1,0)을 접점으로 하는 접선을 l이라 하자. 직선 l에 수직이고, 점 P를 지나는 직선이 곡선 y=f(x)와 서로 다른 세 점에서 만나도록 하는 a의 값의 범위는?
답은 일단 -1<a<0 또는 0<a<1/3 인데요~
우선 함수 식을 세우면, y=[-1/(a+1)]*(x-1)인데요 그거랑 f(x)랑 =로 놓은 다음에 정리하면
(x-1)(ax^2+x+1/(a+1))=0인데, 여기서 답지에 (ax^2+x+1/(a+1)은 x=1을 근으로 갖지 않으므로, 판별식 D>0으로 해서 풀었거든요.. 그런데 저게 x=1을 근으로 갖지 않는 다는건 알겠는데요 왜 D>0으로 유도되는건지.. 어차피 문제에서 서로다른 세점이라고 했으니까 D=0이 아니고 D>0인거 아닌가요?
원리를 잘 모르겠네요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개억까당함 0
하따 잡은줄.. 숏이나 칠걸그냥 아ㅏㅏㅏ
-
얼버기 1
모닝
-
D-258 0
다음주부터 독재 가니깐 스카 가는 마지막날.
-
오늘 할일 1
10모 기하 풀기 이게 전국 만점 한명이라매요? ㅋㅋ
-
지라이야랑 이타치랑 싸우면 누구 이기는거임 대체
-
아침이라 머리 아프다고 넘기겠지? 오후까지 존버 타야겠다
-
탄핵되고 ㅁㅈ당에서 대통령나오면 의대 감원되나요?
-
하루 동안 물리학2 1단원 정도만 풀었습니다
-
덕코복권에 다 꼴아박음..... 아 이제 편의점에서 덕코로 점심 못 사먹겠네
-
국어 수학 못할수록 사탐런의 효용이 크죠?
-
아침은 0
롤체 5인큐
-
문학급으로 연계체감 되나요?
-
선택과목 고민 1
언매 기하 지1 물2 설의 가는데 선태과목 불이익은 없겠죠? 선택과목 심리싸움만...
-
일단 전 물1지1이었고 이제 군필 5수가 되어가는 사람입니다. 지1은 계속...
-
ㄷㄷ
-
얼버기 3
사실 밤샘
-
32분 전인 가능세계가…;;;
-
재수생인데 주변 친구들 반절은 독재가고 잘하는 애들은 다 시대 재종갔는데 저는 너무...
-
푸는데 ㅈㄴ 오래걸림 ㅋㅋ
-
제 보잘것 없는 수험생활의 정수를 담았습니다 아마도 근데 칼럼을 다 쓰고도 기다려야...
-
예전엔 이렇지 않았던것 같은데.....
-
인생 최악의 악몽 꿧다 11
(내용 주의) (순수하고 마음이여리고 차칸 오르비언이면 읽지말것) 1. 폐쇄된...
-
자기야 6
잘자
-
오늘 할 일 1
여드름 흉터 연고 사기 주민센터가서 모바일 민증 받기 머리자르기
-
뭔가 정리가 안되는 느낌 자체교재라도 만들어볼까
-
힘내라 샤미코
-
기차지나간당 4
부지런행
-
작수2임..
-
1. 수학 실모 풀기 2. 프랙탈 만들기... (?)
-
다 자나 3
웬일로 알림창 마지막 알림이 2시간전이지
-
흑백 료 등장 3
-
원래 유튜브 계정은 너무 많은 관심사들이 섞여나와서 생산성 있는 채널들만 따로...
-
새벽에두시간동안칼럼을쓰고있는가
-
서연카성울?? 서연성카울??
-
센츄리온 질문 6
고2 학평도 센츄리온 신청 가능한가요? 만약 된다면 이 성적으로도 되는지…
-
ㅋㅋ 갇혓다 1
흐에
-
당황했네 ㄷㄷ
-
수바는 맛있다 0
방금 풀고왔는데, 확실히 실모는 실모다. 다른 N제와는 맛이 다르다. 실모내놔
-
그냥어떻게봐도존나부정적으로밖에안보여 근데그런인생이라납득은가 개좆같은일만일어나는데뭐죽으라는거지
-
그건 바로 '나' 살기 싫음 ㅇㅇ 진심
-
학원묵시록 0
재밋나요
-
이랴!!
-
걍 사탐할까 5
나도 사탐런으로 꿀빨고 여초과 가고 싶다ㅅㅂ
-
못참겠대 0
아:: ㄸㅂ
-
반수 관련 질문 6
2025 수능 백분위 화작 확통 생윤 사문기준으로 99(1) 70(4) 2...
-
여기저기 잘쓰고잇음
-
계속 생각난다 너무 맛있는데
-
치킨 맛있다 9
다 먹었으니 나 놀아줄사람
서로다른 세점에서 만나야 되는데
(x-1)이라는 점은 이미 존재하고
오른쪽 식이 x=1이 아닌 2개의 근이 있으면 서로 다른 세점에서 만나는거니까
d>0을 조사해봐야겟죠
판별식을 조사해보면 -1
왜 D>0로 유도되는지에 대한 부분은
수2방부등식을 참조하면 좋을텐데
미통기라 ..ㅠㅠ
와 빠른 답변 진짜 감사합니다 그런데요 ㅠㅠ
제가 궁금했던 부분은.. 왜 D>0로 유도되는지에 대한 부분이에요 ㅜ 모르겠어요 ㅠㅠㅠㅠㅠ흐으..
흠..
서로다른 3점에서 만나야 되잖아요?
근데 이미 x=1에서 만나죠?
그럼 x=1이 '아닌' 2점만 찾으면 되잖아요.
근데 정리한 식 오른쪽이 2차식이네요
마침 왼쪽은 x-1이구요.
2차식의 근이 2개 존재하면
2차식이 서로다른 2개의 점에서 만난다는거니까
D>0이에요.
맨위랑 똑같은말인데 ㅠㅠ
아~~~~~ ㅠㅠㅠㅠ 완전 이해 되었어요 진짜 감사합니다 !!