수학의 실용성에 대한, 많은 사람들이 좋아하지는 않을, 사설
게시글 주소: https://orbi.kr/00026396269
"수학은 왜 배워야 하나요?"
"수학을 배워서 어디에 쓰나요?"
입시 준비를 하다 수학에 지친 친구들이 많이 하는 질문이다.
"사칙연산만 할 줄 알면 되잖아."
수학을 배우기 싫어서 'realistic'한 변명을 하는 친구들이 흔히 하는 말이다.
"이런 문제 수능에 안 나와."
자신이 풀 수 없는 어려운 문제를 만났을 때 귀찮아하는 친구들이 늘어놓는 변명이다.
수학은, 단순히 계산하라는 학문이 아니다. 계산할 수 있다고 개념을 아는 것도 아니다.
벡터의 내적 공식을 암기했다 하더라도 다른 개념들과 연계해서 문제를 해결할 수 없으면,
그것은 벡터의 내적을 잘은 모른다는 말을 다르게 말한 것에 지나지 않을 것이다.
수학의 논리구조는 우리가, 내뱉는 언어의 파장을 고려할 수 있게 해준다.
저조한 성적에 고민하는 친구에게 밝은 미소를 지으며
"공부를 열심히 하면 원하는 대학에 붙을 수 있어!"라는 말을 했다고 가정하자.
대우 명제는 원래 문장과 동치임을 당연히 알고 있을 것이다.
즉, "대학에 못 붙었다면 공부를 열심히 안 한 거야!"라는 말을 하고 있는 것이다.
이 문장은 예외적인 가능성을 배제함으로써 자책감을 가중시킨다.
이는 개인주의 사회에서 만연한 '책임 전가시키기'와도 같다.
"노력만 한다면 누구나 성공할 수 있어!
... 그런데, 너가 성공하지 못한 이유는 너가 노력을 안 했기 때문이야."
아무렇지도 않게 생각하거나 말하는 문장 속에서,
논리를 모른다면 생각지도 못할 함축이 진행되는 것이다.
수학은 또한, 큰 문제를 여러 개의 작은 문제들의 합집합으로 환원시키는 과정을 가르친다.
예외적인 경우를 제외하면, 수학 문제들은 여러 개의 자그마하고 풀기 쉬운 질문들로 나누어진다.
예를 들어, 이차방정식 x2 + 2x - 8 = 0을 푼다고 가정하자.
이는 크게 보면 다음의 단계로 나누어진다:
1) 8의 약수를 찾는다.
2) 곱해서 8이 되는 수 중 차이가 2가 나는 두 수를 찾는다.
3) x2 + 2x - 8을 두 일차식의 곱으로 나타낸다.
4) 각각의 일차식이 0이 되게 하는 값들을 찾는다.
쉽다고 생각하는 이차방정식의 풀이도, 이렇게 여러 단계들로 나누어져 있다.
우리의 뇌가 이차방정식을 푸는 과정을 하나의 알고리즘으로 저장해 놓은 것이다.
어떤 개념을 배웠을 때 이 개념을 응용하는 법을 알려주는 수학의 기능도 이와 관련이 있다.
수학은 다른 많은 과목들과 달리, *초.중등교육에서 배우는 내용이 철저히 수직적이고 계통적이다.
이는 다시 말해, 이전에 배웠던 모든 것을 백분 활용하고 응용하는 능력을 기른다는 이야기다.
- *중등교육: 중학교와 고등학교에서 실시하는 교육.
이를 사실로써 뒷받침해보자면,
수학이 힘들다며 도와달라는 친구들을 보면 열에 아홉은 기본기가 부족하다.
시험을 치른 후에는 까먹을 수 있는 다른 과목들과 똑같은 방법으로 수학을 공부해서 그렇다.
수학의 "본질"을 무시하고,
수학을 단지 다른 과목과 같이,
입시 때문에 공부해야 하는 과목으로 치부해서 그렇다.
물론 이렇게 말하는 사람들도 있을 것이다.
"나는 수학의 본질이고 뭐고 그냥 입시 열심히 해서 수능 잘 보고 대학 붙었는데?"
그런 사람들은, 그냥 그렇게 살면 된다. 본질을 무시하고, 잇속만을 낚아채면서.
그러한 삶의 자세가 대학이나, 그 이후의 삶에 얼마나 많은 도움을 줄지는 잘은 모르겠지만 말이다.
글을 길게 쓰지는 않겠다.
하지만 끝으로, 아직도 수학의 "비실용성"에 목매달고 싶은 사람들에게 질문하고 싶다.
국어국문학과를 갈 것이 아니라면 문학은 배울 필요 없는 과목인가?
어차피 지키지 않을 도덕은 가르칠 필요가 없는가?
가속도 계산할 필요 없으니 F = ma 따위는 몰라도 되는가?
현대문명이 번역기를 만들어 줄테니 영어는 배우지 않아도 되는가?
과거는 과거이고 현재가 중요한 것이니 역사 따위는 배우지 않아도 되는가?
쓸모만으로 학문의 가치를 결정짓는 것이 바람직한가를 다시 생각해보라.
논리구조를 학습하는 가장 좋은 방법 중 하나가,
단지 실생활에 쓸모가 없다는 까닭으로 배움의 이유를 박탈당해야 하겠는가?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
화작 82 미적 84 영어 87 사문 50 생명 40 백분위 몇예상…?
-
23 33 34 38틀
-
평가원, 교육청에서 사용된적 없는걸로 아는데 지적유희용으로 기억해볼까
-
저 어떡하죠…
-
그냥 진짜 메인스트림한거 하는게맞나
-
그럼 정시 일반을 줄이는건가요.?
-
아니니이ㅣㅣ올해 친 어떤 모의고사에서도 국어가 85 밑으로 내려가 본적이 없는데.....
-
시험지랑 가채점표랑 달라서 한문제를 뭐라 마킹했을지 모르겠음 81 아님 77인데
-
지구 바로 바꿔야겠죠?ㅋㅋㅋㅋ 뭐로 해야되지
-
근데 모병제돼도 1
지금 성인된 사람들은 군대 가야 하지 않을까 전환기간 사이에 끼인 사람들은 형평성...
-
4덮 0
4덮인데 등급 어캐 뜰까요 수학 84면 몇등급이져..?
-
영 96 한국사 48
-
4덮 결과 3
국어(언매) - 98 : 단어 문제…. 수학(미적) - 86 : (22, 23,...
-
4덮 미적 1
공통2 선택2 84점인데 무보2뜰까여?
-
애미터졌나
-
11 12 18 다 3점짜리네 하....
-
개빡셈;;
-
물1으로 갈까 0
빡센 시험지 만나니까 진짜 타임어택 뇌정지가 너무심함 멘탈나가서 계산실수 ㅈㄴ 터지고
-
모병제를 해주겠다는 말이 아니라 병영에 가두는게 비효율이라는데 걍 대통령되고 모병제...
-
영어1 + 국수탐 무보정 평균 백분위 96이 조건임 언매95 미적84 영어93...
-
여기 >>>> https://orbi.kr/00072826736 1단원 문제면 다...
-
기숙학원다니는데 달마다 더프치는 애들있던데 난 개인적으로 6,9 말곤 큰...
-
공부 왜 하지 1
걍 대학 다닐까 해도 안될고같은데
-
4덮 결과.. 0
백분위 예측좀요 국어 공부좀 해야겠다..ㅅㅂ 언매 75 미적 88 영어 2 세지 44 사문 50
-
언미영물1화1 77 88 2 41 41 보정이면 몇뜰라나 수학1 영어 2는 확실한디...
-
더프 미적 81 0
15 22 27 28 30 틀.. 미적 너무 못하는데 교재나 인강 뭐 해야함?...
-
광고에 그만 좀 나오시라구여
-
국잘수망..? 0
언매 90 기하 72 영어 67 수학 왜이래… 영어는 올랐다!
-
(나) 조건 보면 극한에서 로피탈 두번 이용해야 하는꼴임 이거 이용하면 f 식 바로...
-
결혼 안 한 사람이 이혼하는 게 제일 당황스럽음
-
채점하니까우수수틀려있네...ㅋㅋ
-
4덮 1
화작 미적 세지 사문 78. 92 44 40 무보정컷 어느정도 뜨나요?
-
확실히 0
수학 확통보시는분들 국어 goat인듯
-
개인적으로는 1~15 작수보다 약간 어려움 16~22 작수 미적 28번 hell...
-
다들점수가높아졌넴
-
오늘 더프 30분걸려서 다 맞긴 햇는데 줄여야겟죠? 몇분 목표로 할까요
-
다른건 다 비슷한데 독서가 너무차이나서 깜짝놀랐네요 뭘 읽은건지도 모르겠음
-
가볍게 볼라했는데 국어에서 걍 멘탈이 ㅈㄴ나가서 위치 각인이 ㅈㄴ잘됐네요ㅎㅎ ㅅㅂ
-
쉬운 문제 찾아 폴짝폴짝 뛰어댕긴 경제뚜기들 개추;;
-
틀린 사람들 꽤 있을듯 16번도 문제 유형 안 보고 풀었다가 5분 넘게 쓴듯
-
더프 지구 ㅋ 4
지구는 걍 작수 1인 나를 믿는다. 올해 사설 지구는 다 **임
-
자톼당시 여름방학쯤 언매 미적 물1 화2 현재 화작 확통 생윤 사문(아마 사문할듯)...
-
ㅈㄱㄴ
-
더프 수학 0
미적 13,14,15,22,28,30 못 풀고 나머지 다 맞음 현재...
-
더프 생2 0
수능에서도 이정도로 나오나요.. 지1처럼 의문사 겁나 많이 당했는데
-
퇴근 0
50분 전. 모든 질문과 일을 거절한다.
-
수학은 귀찮어<<.~
-
9번(지문 내에서 2번째. ㄱ 이유 물어보는 문제) 문제 논리 생각보다...
-
4덮 41144 1
언 79 미 93 영 96 한국사 48 물2 37 지2 43
와. 이 글 지우지 말아 주세요! 너무 좋은 글을 찾았네요
보통 수학을 싫어한다고 말하는 친구들에게 수학은, 논리적인 과정이나 증명 등이기 보다는 그냥 ‘계산’일 뿐이더라고요. 사실 우리가 초중등 교육과정을 통해 배우고 연습해온 내용도 대부분은 엄밀한 논리보다는 계산에 훨씬 가까운 것 같아서 이 문제는 어쩔 수 없는 부분도 있다고 생각해요.
슬픈 현실입니다
정말로 필요한 것은 의무교육으로 초등학교와 중학교에서 배웁니다. 학문을 쓸모만으로 평가하는 건 말이 안 되지만, 고등학교의 교과는 학문이 아니기 때문에 경우가 다릅니다.
고등학교에서 배우는 영어가 정말 필수에 속하지 않는지, 국문법이 필수가 아닌지는 잘 모르겠네요. 초등학교 중학교가 필수인 것은 올바르나 그것만이 필수라는 것에는 동의할 수가 없어요.
좋은 말씀 고맙습니다. 외국에서는 고등학교의 의무교육이 실시되는 추세이지요. 어디까지가 필요한 부분인지에 대해 합의가 필요할 거 같습니다.
고교과정에 있는 과목이라고 해서 반드시 필수적이라 보지는 않습니다. 수학과 다른 과목이 본질적으로 다르다는 언급은 학문적 우월주의르 흐를 수 있으니 적절하지는 않은거 같네요.
아, 그 부분에서 오해의 소지가 있었을 수도 있겠군요. 저는 수학 교육이 다른 과목과 차별화된 효과가 있다고만 했고, 다른 과목이 수학에 비해 차별화된 효과가 없다는 것에 대해서는 언급하지 않았습니다.
국어 교육은 언어 생활에서의 설득력과 작문 실력을, 과학 교육은 세상에서 일어나는 사건들을 가설과 실험으로 바라보는 시선을 가르쳐주죠. 다만 국어와 과학에 한해서는 "왜 배우느냐"라는 질문이 자주 나오지 않으나 유별히 수학의 경우에 그런 질문을 많이 하는 경향이 있어 이 글을 쓰게 되었습니다.
수학이 다른 과목에 비해 우월하다는 것은 사실이 아니고, 저도 그런 생각을 가지고 있지 않습니다.
잘 읽었습니다. 무슨 이야기 하시는지 이해할거 같네요.
모든 나라에서 수학을 가르치는 이유는 그 실용성이 아니라 오히려 사고 방식일 겁니다. 철저하게 자신이 아는 것에 기초해 논리적으로 새로운 것을 도출해내는 과목인 수학은(엄밀히는 그 근본의 근본에서는 '공리'라는 것에 의존하기에 완전한 논리학은 아니지만) 성장기의 청소년들에게 논리적 사고력과 연역적 문제 해결 능력을 길러 주기 아주 좋은 재료니까요. 수학 교육의 목적은 사실 이런 건데, 마트에서 미적분도 안 쓰는데 미적분을 왜 가르치냐는 지적은 수학교육의 목적과는 약간 엇나간 것 같죠.
수학의 본질에 대한 언급 역시 이런 기초에서 판단하면 틀린 말도 아니라는 생각이 듭니다. 고등학교까지의 과정 중에서 내용보다 그 내용을 끌어내는 사고방식을 가르치는 것을 목적으로 하는 과목은 수학 말고 생각나지 않네요. 국어는 정보를 받아들이는 방식을 가르치는 것이니까..
글을 읽으면서 바로 수학에 대한 깊이가 다르다는 생각을 했는데 설수리 재학생이셨군요ㄷㄷ
정석 서문에 비슷한 요지의 홍성대선생의 사설 몇 줄이 담겨있죠.. ㅎㅎ