수리고수님들 함수의극한 질문좀요
게시글 주소: https://orbi.kr/0002549658

제가 문제를 푸는 이해가 안되는게 있어서요
lim f(x) = ∞
x->a
lim 3f(x) - 2g(x) = 3
x->a
일때
lim f(x) - 2g(x)
x->a ----------- 를 구하는건데
3f(x) + 4g(x)
문제를 보면 그냥 평범한건데 제가 함수의극한 개념이해가 혼동되는건지..
lim f(x) - 2g(x)
x->a ----------- 의 극한을 구할때 이식의 분모와 분자에 f(x)를 나누잖아요?
3f(x) + 4g(x)
그러면 1 - 2 g(x)/f(x)
--------------- 가 될텐데? 그러면 원래식에서 정의역이 바뀌지않을까요??
3 + 4 g(x)/f(x)
f(x)로 나누면 f(x)=0인 x가 정의역에서 빠지잖아요 f(x)가 0이면 안되니까요
그러면 원래식의 그래프랑 바뀐식의 그래프랑 달라지는데 바뀐식에서 함수의 극한을 원래식의 함수의 극한이라고해도 되나요???
그렇게 치면 극한을구할때 함수의 식의 변형을 하면 안되지 않을까요??? 죄송합니다 수학 허접이라 이해가 안됩니다 도와주세요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ
-
진짜 이쁘냐고 물었어
-
죽고싶어졌다
-
님들 1
대가리 깨질거ㅜ같은데 해결방안 추천좀 해줘요오
-
선배님들 1
별표 처놓은 대학들 따로 제출하라는 게 없어 보이는데 진짜 안해도 될까여 좀...
-
국어 1컷 70점대 수학 1컷 70점대 영어 1등급 1% 과탐 1컷 40점 교육과정...
-
이 방법대로 적용하면 은근 귀찮은 경우의 수에서 금액관련 문제 전부 해결가능합니다
-
동생 쓰담쓰담 2
귀엽군
-
본인 블랙 화이트만 신음 초록,파랑,레드 이 색깔 신발 신는 사람 있음?
-
집에 돈이 많던지 적던지 부모 뺵이 있던지 없던지 인맥이 넓던지 좁던지 못생겼던지...
-
재수합니다 2
충북대 등록포기했고 진주교대 바로 앞에서 문닫혔고 수능날 평백 25내리고 재수라.....
-
어디가 이성적으로 맞는 선택이라 보시나요
-
뭐임? 신기하다
-
질문 ㄱㄱ 울학교에서 30명은 간듯ㅋㅋ ㅎㅇㄱㅎㅇㅌ
-
하츠오브 아이언 0
개 재밌어 보이는데 전쟁덕후로서 참을 수 없음
-
2년 남았다 4
국어 2컷 (이 ㅅㄲ 가 가장 문제) 미적분 100 영어 2 지1 98 물2 94...
-
화학러 고민 4
처음엔 고석용 선생님 강의로 쭉 갈 생각이었는데, 김준 선생님이 압도적이라는 얘기가...
-
난이도 둘중하나로나오면 머고를거임?
-
설대 필수 시절에는 투 하나만 꼈는데 이제 투하는 애들은 거의 두개씩 끼는게 변수임...
-
내가 맨날 배달 음식 시켜주고 심부름도 해주는데 왜 ㅈㄴ 까칠할까 나랑 13살 차이나는데
-
참고로 본인은 1년정지먹어서 글 못씀
-
ㅜㅠㅠㅠㅠㅠㅠ
-
시립대 0
추가모집 자연 949.80 이면 붙을까요??
-
이 신발 어때요 9
1,2,3번 다 이쁨?☃️
-
필기감도 좋고 울트라라서 화면 넓직한 것도 좋은데 그 펜슬 자체가 진짜 확실히 좀...
-
한양대 목표 재수생인데 내신 2.1이면 ㄱㅊ은거임?ㅜㅜㅜ… 수시러엿다가 6광탈하고...
-
22수능 대비 교재로 23 24 25 26수능 돌려막기
-
아빠가 수능 준비할때 이런 조건을 내거셨음 "수능 끝나고 대학 가면 자취시켜줄게"...
-
진짜눈만ㅇㅈ 29
다른사진올리면특정당할거거ㅏㅌ음 ㅎ
-
1. 트밀 끝나고 바로 러쉬 들어가나요? 2. 단과 라이브 기준 작년 내신 휴강 없었나요?
-
걍 살아야지
-
대성 새로 오신 것 같은데 어느정도 입지가 있는 것 같아서요 강대에서 유명한 분이셨나요?!
-
목동 시대인재 재종 정규반 개강했나요? 그리고 수업이랑 컨텐츠 말고 인강이랑 병행...
-
ㅅ. ㅍ
-
공부하러 감 1
-
끔찍한 상상 해버렸는데 13
양손에 스시모듬 들고 서빙하다가 혹시라도 실수해서 넘어져버리면 개닦이고 3만원...
-
대학생입장에서 피자한판 치킨 한마리 다 먹을 수 있는게 넘 커요
-
수학 - 김범준 + a (아마 쫑느 라이브 중간합류할듯) 국어 - 정석민 사문 -...
-
근데 왜 뽀삐가 딜 1등이냐?
-
표본 꼬라지 ㅅㅂ
-
차영진 수1 팔로워,기무적 다듣고 뭐하는게 좋을까요? 12월달부터 해서 수1수2...
-
물론 본인은 저능해서 1년박고도 사문 만점 못받음
-
아니 다 상대평가 잖아 똑같이 4퍼인데 기준이 뭔지 잘 모르겠네 쉬우면 다 쉬운거 아녀요?
-
미적 3
작수 확통4등급인데 수학3만 떠도 되는데 미적해도 될까여
-
편법 x 수능성적표 인증하심 됩니다~
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
어떤 분위기인가요? 그냥 3/4부터 바로 등교 안한다는 분위긴가요? 안갈거면...
-
앞으로 3시간 30분
-
기하 vs 확통 3
공대 가려는데 작수131415 202122 못풀었고 백분위50인데 기하하면 다른과목...
[ x가 a에 한없이 가까이 가면, f(x)는 양의 무한대로 발산한다 ] 라는 말을 철저하게 이해하면, 아마 답을 얻을 수 있을 겁니다.
x=a 주위에서, f(x)=0이 되는 경우를 생각해 볼까요? 일단 x=a 근처의 x = r_1에서 f(x)=0을 만족한다고 해 보죠. 그러면 r_1과 a 사이의 x 중에서 f(x)=0을 만족하는 다른 x가 있을까요? 뭐, 있을 수도 있겠네요. 그러면 그걸 r_2라고 해 보죠. 그러면 다시, r_2와 a 사이의 x 중에서 f(x)=0을 만족하는 다른 x가 있을까요? 왠만한 경우면 이쯤이면 그런 x는 없겠지만, 혹시 모르니까 그런 x가 있는 경우를 생각해 봅시다. 그러면 그런 x를 r_3이라고 하면 되겠네요. 그러면 또 다시, r_3과 a 사이의 x 중에서 f(x)=0을 만족하는 x가 있을까요?
아예, 이렇게 말해 보죠. 이런 식으로 계속 r_1, r_2, r_3을 찾아 가면서 a에 가까워지고 있는데, 이렇게 찾는 과정이 끝이 날까요, 안 날까요? 그런데, x가 a에 한없이 가까워지면 f(x)는 양의 무한대로 발산한다고 주어져 있지요. 그렇다면, "극한에 대한 느낌, 이미지, 직관"에 의하면 아무래도 이렇게 r_1, r_2, ...을 찾는 과정은 언젠가 끝날 거라는 "심증"을 얻습니다. 즉, 마지막으로 찾은 r_k를 R이라고 하면, R과 x 사이에서는 항상 f(x)가 0이 아니겠고, 아마 양수겠지요.
따라서, x=a를 포함하는 개구간을 "적절하게" 골라서 그 개구간에서는 f(x)가 항상 양수가 되도록 할 수 있습니다. 이제, 그 개구간을 f(x)의 새로운 정의역으로 "선언"해 버리고 다시 문제를 바라보면, 이제는 문제가 없음을 알 수 있습니다.
조금 더 덧붙이자면, 아무래도 위에서 얻은 "느낌, 이미지, 직관"이나 "심증"은 극한이라는 개념의 핵심적인 부분을 건드린다는 느낌을 얻을 수 있을 겁니다. 이제 이 "심증"을 수학적인 언어로 적어 보도록 하죠. 대괄호에 유의하면서, 읽어 보세요.
[ [ x-a가 어떤 양수 R보다 작으면 f(x)는 항상 양수가 된다 ] 라는 명제가 성립하는 R이 존재한다. ]
그런데 위에서 x-a로 해 버리면, 조금 문제가 생긴다는 것을 알 수 있습니다. x가 a보다 작은 경우가 문제가 되지요. 그러면 절댓값 기호를 추가해서,
[ [ | x - a |가 어떤 양수 R보다 작으면 항상 f(x)는 0보다 크다 ] 라는 명제가 성립하는 R이 존재한다. ]
라고 할 수 있습니다. 그런데, 위에서 x가 a에 한없이 가까워질때 f(x)가 양의 무한대로 발산하니까, 위의 문장에서 0 대신 아무 양수로 바꾸어도 성립할 것 같습니다. 그러면 위의 문장을 일반화해서
[ 임의의 음이 아닌 실수 M에 대하여 [ [ | x - a | < R 이면 f(x) > M 이다 ] 라는 명제가 성립하는 R이 존재한다. ] 가 성립한다 ]
라고 쓸 수 있습니다. 대괄호가 조금 많아졌지만, 차근차근 살펴보고 해석해 보세요. 정리하면, x가 a에 한없이 가까워질때 f(x)가 양의 무한대로 발산한다는 말이 가지고 있는 핵심적인 부분은 바로 위의 문장(대괄호 있는)에 있는 것 같다는 "느낌, 이미지, 직관"이나 "심증"이 있습니다. 그리고, 이 "느낌, 이미지, 직관"이나 "심증"은 아주 강력한 "심증"이고요. 그렇기 때문에, 대학교 이후의 수학에서는 x가 a에 한없이 가까워질때 f(x)가 양의 무한대로 발산한다는 말을 바로 위의 문장(대괄호 있는)과 같은 방법으로 정의합니다.
위의 댓글에서 말하고자 하는 바는, "극한이란 무엇인가"에 대한 세밀하면서도 날카로운 개념이라고도 할 수 있습니다. 그렇기에 보통은 고등학교에서는 잘 다루지 않아요. 하지만, 이런 수준의 개념까지 가지고 있다면, 극한을 보다 잘 이해할 수 있을 것이며, 혹시 대학교 이후에도 수학을 공부하게 된다면 그 때 분명 도움이 될 것입니다.
글쓴이입니다 오랜만에 들어왔는데 제가 감사 댓글을 안달았었네요 이렇게 길게 설명해주셔서 극한의 개념을 이해하는데 큰 도움이 됐었습니다 읽으실진 모르겟지만 감사합니다