간단한 고등 수학 문제인데 이해가 안되요
게시글 주소: https://orbi.kr/0002485939
자세하고 알기쉽게 해설해주실 수 있으시나요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중간계획표 세우면서 행복회로 돌려야겠음
-
제곧내
-
이 기요미야
-
진짜임?
-
스블 미적 완강하면 n제 그만풀고 실모 들어갈건데 지금 생각중인건 강k 서바중에...
-
라면 부셔먹기 7
일주일을 달린 저에게 주는 보상임
-
여사친이… 있어? # 있어야 좋아하지 # 있어야 만나지
-
근대 원래 인증하고 시간 지나면 내리는게 국룰이에요? 10
전 상관업는데 신기하군뇨.. 아싸라 그런가
-
민지야~ 6
-
사랑평화우정 3
이걸로 닉네임 바꿀까
-
여자들만 행복해!!!
-
대체 어느정도까지 심해야..
-
웨 몷라?
-
수특 한권이 전부임 놀랍게도
-
큐브상담에소 공통하고 미적 하라고하셔서 그러고있는데 미적 안하니까 불안해요
-
1에서 10까지
-
유튜브에도 있네 ㅋㅋㅋㅋㅋ 이때 나몰라패밀리 감성 지금 보니까 못 견디겠노 ㅋㅋㅋ
-
내가 미각이 마비된건 아닐텐데 너무 심했다...
-
영어기출필수론 28
영어는 기출만 보면 된다고 생각함 교육청도 필요없음 평가원만 7개년 기출만 계속...
-
공간벡터는 살짝 머리아프네 벡터 자체가 아직 어색해서 그런가
-
다음닉추천받음 16
생각해본거 저능강해린 1.0 지망생 1.0 강해린 08
-
실력은 오르는데 0
속도가 떨어지는중ㅋㅋ 공부란 어렵구나..
-
출기 출기능수 예전 네임드
-
막 이런거 수2 생기부에 넣어도 되나 그리고 넣을수 있나..?(야한거아님)
-
국어 정확히는 기출만 보면 안되고 기출 마르고닳도록 보는건 효과가 적다 반복은...
-
가형 킬러 21번 30번 이런건 아예 걸러도됨
-
내가그럼..
-
다른 사람 같음
-
모두들 비켜라 크아악
-
아니국민연금생각하면딱히부럽지가않아
-
미적분 상담 7
1까지는 솔직히 절대 쉽지 않아서 현실적으로 수능까지 미적 2까지 열심히 해보는게...
-
지갑 안 갖고 나와서 어쩌지 하고 있었는데... 나 05년생 새내긴데...
-
3모 이거 ㄹㅇ임? 10
사실 제가 예상해본거임 생윤 120019명 사문 148762명 물1 34028명...
-
난뭐가좋은문제인지모름 안목이없음
-
저나이때로돌아가면상산고정문개박살내고홍성대전이사장님악수쌉가능인데
-
아이고 아이고
-
흐음 집에서 라면 끓여먹는게 나았으려나
-
도플러 효과는 파원의 속력이 파동의 속력보다 작을 때만 발생하는 물리적 현상입니다....
-
수시충인데 메디컬에 미련을 못버리겠네요.. 솔직히 작수 치고 더해도 안되겠다...
-
기만중에서 5
노베기만이 제일 긁혀요 아 오르비 노베 수준 더럽네 높네
-
올해는 4규s1 vs 빅포텐s1 뭐가 더 어렵나요? 0
작년엔 4규가 더 어려웠다는 말이 많던데 올해는 어떤가요? 그냥 비슷비슷한감
-
자전거타기 6
오랜만에 탔더니 힘들어서 포카리 500ml 순삭
-
그게 내 운명인 거시다...
-
국수(탐) 중에 추천 부탁드립니당
-
다음주부터 빡공할거야!
-
노베라서 울었어요... 풀이도 저능아 풀이라서 양해부탁드려요...
-
공부 의지 약하면 잠깐이라도 잇올 다니는 게 나을까요? 2
너무 비싸서 못 다니고 있는데 2~3달 정도라도 짧게 다녀볼까 고민 중인데 괜찮을까요?
-
절대 한끼에 다 못 먹는데
1아니에요?
원의 중심에서 접점으로 직선 그으시고 , 나뉜 삼각형 두개 넓이를 코사인세타,싸인세타 이용해서 나타내면 되겟네요
접점을 (cos세타,sin세타)로 두면 0
OA=1/cos세타 OB=1/sin세타 이니
삼각형 OAB=1/(sin 2세타) (← 2배각 공식)
0<2세타
따라서 삼각형 OAB의 넓이≥1
원위의 한점 코사인세타 ,사인세타로잡고
직선식 세우면 Cx+Sy=1 이니까
x,y절편 삼각함수식으로바꾸고 곱해서
최소값구하심됨
삼각형 넓이가 최소가 될려면 접선이랑 반지름이랑 수직이니깐 반지름이 높이인 상황에서 삼각형의 밑변의 길이가 최소가 되야하으로 직선 oa ob의 길이가 같으면 되겟네요.
삼각형의 밑변의 길이가 최소이려면 직선 oa ob의 길이가 같아야한다 ?
당연한거임?
피타고라스 써서 최소값구하시면 ..oa ob가 같을때 최소요.
AB^2=OA^2+OB^2≥2root(OA^2×OB^2)=2OA×OB에서 등호성립조건이 OA=OB
아 이코.. 등호성립조건..
머리가 돌이됫군요 . 감사합니닼ㅋ
아 저..그래도 이번수리 나름 96점인데......
멘붕이일어날려고하네요
15일후 논술시험 응시자 맞나싶네요 ..ㅜㅜ
아!! 내가 이해했다
감사합니다. 이해가 쉽게 되네요
ㅇㅋ 이게제일좋음 ㅇㅇ
아 이게 더 간단하군요!
감사합니다 졸라 이해됨 ㅋㅋㅋ
다 끝난마당에 늦게봐서 아쉽지만
글쓴이의 수학공부를 위해서
수학과학생의 의견을 좀써보면
OA^2 + OB^2 >= 2root(OA^2xOB^2)에서
등호성립 조건이 OA=OB라고해서
반드시 그때 제곱의 합이 최소라고 할수는 없죠..
단지 등호가 성립하는것일 뿐입니다.
분명히 OA와 OB가 모두 변수이고, 그 제곱의 합인 OA^2+OB^2 도 변수이고
그 곱인 OA x OB 또한 변수인 상황에서,
단순히 등호성립순간에 최소가 된다고 단정지어버리면 안됩니다.
이는 엄연히 직관의 영역으로 들어가므로, 비논리적이고
[수리논술시험]이라면 [산술기하로 최소인순간을 체크]하면 감점이 될거라 생각되구요.
결론적으로 OA= OB일때 최소가 맞긴하니 "수능이라면" "운좋게" 정답은 맞아들어갑니다만,
수리논술 혹은 대학수학 시험이었다면 명백히 감점요소가 될듯합니다~
오~~~ 제가 그생각 들어서 이거 머리싸쥐고 2시간 생각 ;(그저께) 잠도 못자고
왜 등호 성립 조건이 저거면 저렇게 돼지? 이러면서 지식인에도 질문하고 했는데
정확하게 말씀해주시는 분이 있네요 궁금증 해결됐음 감사요 ㅎㅎ
48일동안 잊고있던 수학생각나네;;
이거 분명 고1 원의방정식에서 나오는 응용문제인데,,, 다들 수2(아닐수도)이용해서 풀어주시네 ㅋㅋ;;;
질문자님이 뭐 이과 예비고3이시라면 문제가안되지만 고1이시라면 ㅋㅋㅋ 댓글들이 다 이해가 안갈듯
삼각함수 이용안하고 접선의방정식이랑 y절편,x절편 이용해서 식세운담에 산술기하 쓰시면 고1수준에서 풀수있어요
접점 딱 중간인부분에서 양옆으로 조금씩움직이면 짧아지는쪽은 많이짧아져봐야 1이고 길어지는쪽은 무한대까지 길어질수있으니까..
그냥 중간인부분에서 최솟값.
거기서 걍 1:1:루트2 사용해서 길이구하면.. ㄷㄷ;;;
아마 중3이라면 이렇게 풀듯하네요
한 좌표가 커지면 ㅇㅇ.. 넓이 커져성
그것도 x ,y 대칭이니까
y=x 만나는점 ?ㅇ...
너무 직관적인가 ㅋ
ㅇ직 있으실려나~ 접하는 거이기 때문에반지름이 항상 높이가 되므로
밑변 즉 여기서는 대각선이 가장 짧은 걸 생각하시면 되겠습니다~
보자마자 직각 이등변일때가 나옴 너무 직관인가
y=s/c 랑 수직이니까 기울기가 -c/s 인직선 이구 그 직선이 (c,s)를 지나요 식정리하면
y=-c/sx+1/s 되구
와이절편 엑스절편하면 1/2sc 인데 2sc가 최대일때최소가되니까 (s+c)제곱>=2루트sc 해서풀면뎀 100퍼 고등수학개념
직선 방정식세우고 원이랑 접하는조건에서 코시슈바르츠 써도되지안을까요?
ab가 y축과 x축하고 평행하다면 도형의 넓이가 무한.
고로 가운데가 최소
그러니까 선을 돌려본다고 생각하면 되는건가.
그냥 삼각치환하면 끝
반전점으로 생각하셔도되요 ㅋ
접점을 (a, b)라 하면 저 접선 방정식이 ax+by=1이니까 x절편 1/a(a>0), y절편 1/b(b>0)이고 a²+b²=1≥2ab, 삼각형OAB=1/(2ab)≥1이므로 최솟값 1
저는 이렇게 풀겠는데요(오랜만에 고1수학 하니까 머리가 지끈거리네요). 근데 문제 보자마자 OA=OB일 때 최소라는 생각 든다는 건 공감함...