적분판정법이랑 문제(급수)
게시글 주소: https://orbi.kr/00023941596
요즘 고등학교에서 애들 질문 받아주는 알바를 하는 데
가끔 질문이 안 와서 월급 루팡이 되어버리는 일이 생긴단 말이죠.
그래서, 아이스크림 같은 간식을 걸고 게시판에 문제를 넣어 볼까 생각을 했죠.
수능 기출문제나 경시문제는 애들이 알아서 풀꺼고
애들이 배운 수열, 급수 문제를 준비 했는데 고2 애들이 풀만할지 궁금하네요.
고등학교 때 배우는 판정법은 아닌데 이해하긴 쉽고 써 볼만한 걸 넣어봤어요.
참고로 (*),(**) 붙은 문제만 풀면 간식으로 줄꺼임!
*아 참고로 질문 오는 애들은 1~2학년이에요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3x^2 -22x+24=0 을 계속 (3x-6)(x-4) 로 풀고있어서 답이...
-
가서 할거 1
뷰르릇 떨기
-
작수 기하 2컷이 79-80인데 작년에 말 많았던 문제가 20 21 22 30 +...
-
다시 잇올가는중 공부하고 오겠습니다 모두 화이팅
-
가서 할거 3
국어만 판다
-
표점/변표 질문 0
안녕하세요. 입시 준비하면서 궁금한게 생겨서 여쭤봅니다! 검색해서 혼자 해결해보려...
-
귀여움 6
나
-
가서 할거 2
가기 하기
-
...
-
가서 할거 2
5모 30번 풀기 탐구 5모 풀기 5모 수학 관련 기출 정리하기
-
엥
-
널 사랑하는거지
-
귀여워지고싶다 6
우웅..
-
문학은 하는중인데.. 흠
-
신드리 4
귀여웡~~~~!!
-
ㅇㅇ?
-
목표를 바꿔야하나 11
원원 내신cc로 설치갈려면 만점을 맞아야 될 거 같은데 난이도 ㅅㅂ..
-
킬캠풀다 5모푸니까 천국임ㅋㅋ 킬캠 76 80 5모 88 21 22 29틀 21너무...
-
밸런스게임 11
앞으로 모든 수능에서 수학 2점짜리는 다 맞음 Vs 지금 통장에 4천2백원 들어오기
-
이 두꺼운걸 드디어 끝냈구나 오늘 오전부터 5시간동안 생윤했네 2회독하면서 선지 분석 제대로 고고혓
-
20번 에너지 틀림 5모 에너지 왜 안풀리지? 머리속에서 생각이 안남. 조건을 빼먹고 읽었나?
-
시대 기출 미적 0
급수 파트 들어왔는데 지옥행열차임.. 등비급수 29번들 연달아 7-8개 박혀...
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
학벌이 의미가 없는 세상에서 살고 있는거죠 사람은 자기 주변을 보고 판단을 하게...
-
파랑을좋아하는 5
-
기출분석이 되어있으면 이정도는 가능해야됨
-
미적 어려웠는데
-
맞다고 했음 그래서
-
대학이 보인다..
-
오르비언 14
가능
-
12번 ㅇㄱㄹㅇ
-
작수 생지는 44 38점 이었고 (생명은 첫페이지에서 병신같이 3점짜리 틀려버린게...
-
아직 입대 6개월된 짬찌지만 아는선에서 답변드리겠습니다
-
지워드렸음
-
공군은 군대 아님? 좀 화나네 ㅋㅋ
-
국어 잘하고싶다 0
국어잘하고싶다 국어 개잘해져서 아무ㅗㄷ 날 무시못하게 국어 고정 1등급을 달성하고싶다 .
-
빅헤드메타뭐야 3
누가이렇게 대단한거야
-
학벌은 무의미함 0
그러니가 올해까지만 하고 내년에는 오지 마라고 아 ㅋㅋㅋㅋㅋ
-
ㅠㅠ . . .
-
연대 라인업 기대되네 16
140주년이라 크게 할텐데 기대가 됩니다~
-
빈칸고자 좀 도와주세여... 90점 턱걸이했는데 빈칸 -8점임
-
한의학의 전문가는 한의사인데 왜 다른 직역이 이거다 저거다 하고있냐? 한의학은...
-
학평 과탐 1
난이도 왜이럼..
-
통제집단 실험집단 안배움? 학벌 vs 떡밥 보고 하는 소리에요 '이 또한 아님 말고'
-
제발 오르비 와서 계속 글이랑 쪽지로 ㅠㅠ . . . 이러지 마시고 이럴 시간에...
-
성공하면 님들 펫 생김
-
그랬나봐 2
나 널 좋아하나봐
여상진 책에서 본거같네요 ㅋㅋㅋ
ㄹㅇ
적분판정법 좋아요!
p series test던가 그 내용 맞아요?_?
네 맞아요.
p급수 판정법 ㅋㅋㅋ
얀센 부등식 관련 내용 추천합니다
아니면 아예 라플라스..
라플라스라니 너무 애들을 고문하려 하신다 ㅠㅠ
얀센 부등식도 괜찮을 것 같기는 하네요
Topology..
리만재배열 어떠신가요
해석학을?....
좀 잘하는 고딩들 기죽일때 쓰는거죠 ㅎㅎ
뭐 3번도 해석학에 있는 스털링 근사인데요 ㅋㅋ
미적분 범위에서 접근 가능하면 넣을 수 있겠죠.
미적분 책 급수 끝 부분에 소개 되던데 봤을 때 ??? 거리긴 했죠.
입-델 논법 간략히 소개하고,
단조수렴정리도 알려주는것도 좋을듯 합니다.
수리논술할 때 요즘 기본적으로 다 배우는 내용이더라구여 ㅎㄷㄷ
이걸 배움?? 다들 과하게 가르치네ㅋㅋ
이런거말고도 좋은소재 진짜 많은데

저 할 때는 안배웠는 뎅저거 내신할때 많이들 배워먹음
차라리 정수론을 떠밀어보심이 (중나정이라던가)
중나정?
중국인의 나머지 정리 그거 말하는 건가요?
넹