지수함수 그래프(사진有) 질문좀 두개만 도와주세요..
게시글 주소: https://orbi.kr/0002357737
y=2x 과 y=x3 의 교점의 좌표를 어떻게 구하는지요?
그래프로 나타내면 이렇게 나타낼수있고
그래프상으로는 교점이 확인이 되는데
이걸 방정식으로 서로 등식으로 놓고 풀이할때 푸는방법을 모르겠습니다.양변에 로그를 취하나요??그래도 모르겠어요..
고수님들.. 도와주세요..

또한
y=2x 과 y=x2과의 교점 좌표를 구하는방법도 모르겠어요.
그래프로 그리면 이렇게 그려지는데요.. 이것도 방정식으로 놓고 두식을 등식으로놓고
풀때 풀이법을 모르겠어요..
또한 이 방정식은 x2인 이차방정식에 관한 문제라고 볼수있는데
왜..근이 세개나되죠??
그래프에서 겹치는부분을 보면 세부분에서 겹치고있어요..
그래프 안그리고 그냥 방정식으로만 놓고 푼다면..근이 두개인줄알고 착각하기쉬울거같아요..
왜 근이 세개나 되고. 어찌구하는지..도와주세요 고수님들..선생님들...

0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
07년생 우리 친구들 인원수도 많은데
-
5번: 계산 절어서 무려 몇 분을 쓰고 답이 안 나와서 넘김(...) 26번까지...
-
난 이길 싸움만 해 그래서 모쏠인가
-
난 CC 싫음 4
BB면 좋겠음 제발
-
ㄹㅇ 대단함 난 사교육 떡칠해야 어느 정도 나오는데
-
단 1초도 후회해본적없음 그렇다고 전애인이 나쁜 사람이라는거는아니고 그냥 나랑 많이...
-
2025 N티켓: 99%(2문제 정도 발상 못떠올림) 드릴: 90% 이상 2024...
-
오르비하는이유를머르겟슴 11
본인핑. 먼가목적성을잃음. 탈르비해야하나ㄹㅇ
-
이번이 좀 못낸건가 비타민 k 한번 만들어보는게 교육청 사설업체 꿈인가 ㅋㅋ
-
사설이니까
-
술을 좀 줄여야되나 막 언어 장애가 자꾸 생기는 것 같음 그리고 길 걸을때 사선으로 걷더라
-
내일 점심은 덮밥임뇨
-
이투스 꼽사리끼고있는거봐라
-
연애하고싶다 9
과외n개해서데이트비용다낼게 내스타일이기만하면돼 학벌같은것도안봄
-
이미 실패를 해본 사람으로서 다들 실패의 아픔을 느끼지 않았으면..
-
진짜 승리자는 3
작년에 건양의 내신 2.38로 뚫은 선배 아닐까
-
진짜 이랬어야만 함 제발
-
수학 고수님들 한 번씩 풀어주시고 평가 해주시면 감사하겠습니다. 처음 만들어보는...
-
제발
-
뭔가 아쉽다
-
으대생이 막 자기 지방대생이라고 글쓰노 ㅋㅋㅋ 기만의 신들 ㄷㄷ
-
미적 시험범위가 3년치 더프인데 해설지도 안주면 뭐 어떻게 공부하라고 미친놈들 아...
-
21번은 버리고 앞문제에 집중하고 시험 끝날때쯤 걍 문제 슥 훑어봤는데...
-
원래 모고 다음날은 카니발임
-
나는 죽었고, 지금 내 인생의 주마등이 지나간다. 나는 이미 죽은거고 지금 살아가고...
-
기출이 중요하다는게 뭐지 나왔던 발상이 또 나오기도 하나..
-
바로 하이엔드 들어가는건 별론가요
-
난진짜존못아조씨고답없는데 오루비언들이 착해서 맨날 나한테 이런말해주고 괜히 내...
-
ㅇㄱㄹㅇㅋㅋ
-
연애가 하고싶다 3
나 남자인데 폭 안겨서 쓰담쓰담 받고싶음
-
개수 제한이 있음? 성적순 이란거 말고 그냥 6장 중에서 뭐 4장까지만 쓸수 있다던가 그런것들
-
수시 정했다 6
설의 일반 연의 활동우수
-
물2 단진동 주기 측정 지2 편광 현미경 관찰
-
궁금합니다
-
분명 공대인데 5
대체 이 이상치들은 무엇인가 건물에서 보다 보면 존나 인문대 상인 인간들이 있음 정체가 무어냐.
-
아오 이 똥같은과목..
-
15=22>>>>13>>14=21>20
-
보고 있는데 16번 재밋다…. 신박함..첨엔 먼가햇다 그리고 3번에서 막힘...
-
설의 떨어진 남자라는 타이틀이 생기기 때문에 간지나보여서
-
지구 개념 0
개념 책 나가다가 기출 문제 틀리고 다시 고치고 하는 과정에서 너무 완벽하게 이...
-
진짜 거울보고 와 난 왜이렇게 생겼지 매일매일 후회합니노…ㅠㅇㅠ
-
간절해요 ㅜ
-
내신 2.46 4.95 6.14 설의 썼다도르 ㅋㅋ
-
가능할까요? 이 질문 하는 사람들 있잖음 ㅇㅇ 내가 시험 한번 보고나서 그러고...
-
재수학원 한달쯤 다니고 있는데 이번에 알레르기검사를 했더니 풀이랑 나무알레르기가...
-
3모 개높3 0
선택 기하 27번 문제를 잘못 보고 풀다 28,29 날리고 공통은...
-
나안 벙신이야! 3
오르비 들락거리면서 더프 반응 계속 보느라 마음 편히 놀지도 못했네 오늘 못 봤으면...
저게 고등학교 과정으로는 아마 못구할걸요 정확한 근을요 고등과정으로는 그냥 x=2정도만 찍어맞출수 있고여
근이 두개냐는 질문은 방정식을 x에 대한 이차다항식으로 보셨다는 뜻인데 저건 다항식이 아니에요
2^x이 있기 때문에 다항식이라고 할수 없어요
아..그렇군요..고등학교과정으로는 못구하는 그래프이군요.. 이것때문에 하루종일 머리싸매고..왜안되지?? 왜안되지?? 이러고있었어요..ㅠ 감사합니다...ㅠㅠ 밑에 sos님이 풀이해주셨어요..ㅠㅠㅠㅠㅠ감동했네요....
꿀비님 말씀처럼, 고등학교 과정으로는 - 이라기보다, 정확히 말하자면 '새로운 함수를 등장시키지 않고는' - 저 해들의 값을 표현할 수 없습니다. (물론 그러한 증명이 되어있는지는 잘 모르겠지만, 실제로 해의 꼴을 보면 절대로 그게 가능하리라는 생각이 안 들지요.)
일단 중요하게 짚고 넘어가야 할 것이, 기본적으로 주어진 방정식들에게는 몇차방정식 이런 개념이 성립하지 않는다는 것입니다.
방정식의 차수가 의미있는 경우는 오직 그 방정식이 다항식에 대한 방정식인 경우뿐인데, 이 경우는 지수함수가 포함되어있지요.
그러니 일차방정식과 이차방정식의 성질이 다르고 풀이가 다른 것처럼, 또는 이차방정식과 로그방정식의 성질이 다르고 풀이가 다른 것처럼, 지수함수가 포함되어 있으면 당연히 근의 개수와 같은 성질이나 그 근을 구하는 풀이법 역시 달라지게 마련입니다.
아니, 사실 솔직히 말씀드리지요. 저런 꼴의 방정식은, 매우 특수한 세팅이 되어있지 않은 한 절대로 고등학교에서 풀 수 없습니다.
몇몇 아주 특이한 경우들, 예를 들어 두 번째 경우만 해를 정확하게 구할 수 있습니다. (참고로 두 번째 문제 2^x = x^2 의 세 실근 중에서 두 양수근은 정확히 x = 2, 4 입니다.)
그럼에도 불구하고 혹시 '나는 고교과정에 얽매이지 않는 자유인이다! 아무것도 날 구속할 수 없어!' 라고 외치시며 호기심을 불태우신다면, 아래의 쓸데없은 사족을 읽어보셔도 좋습니다. (단, 멘붕은 책임지지 않습니다.)
어떤 함수를 등장시켜야 저 방정식들을 잘 풀었다고 소문이 날까요?
물론 선택지가 하나는 아니겠지만, 역사적으로 가장 잘 알려진 것은 xa^x 의 역함수를 생각하는 겁니다.
여기서 보통 a는 가장 자연스러운 선택인 e (자연상수)로 택하지요.
자연상수가 무엇인지 모르셔도 상관 없습니다. 그냥 2.7182818284590452354... 정도 되는 무리수입니다. 미적분학적으로 특별한 성질을 갖고 있어서 보통 이 수를 기준으로 지수함수를 생각하는데, 굳이 지금 레벨에서 그런 것을 알 필요는 없고, 그냥 a값을 적당히 아무거나 하나 택했다고 이해하시면 됩니다.
이때 xe^x 는 x ≥ -1 인 범위에서 역함수를 가지며, 그 역함수를 보통 W(x)라고 적고 람베르트 W-함수(Lambert W-function)라고 부릅니다. 즉, W(x)는 x ≥ -1 인 범위 내에서 x = W(x)e^W(x) 를 만족하는 유일한 함수로 정의됩니다.
이 함수를 이용하면 두 방정식을 모두 풀 수 있습니다.
우선 첫 번째 방정식 2^x = x^3 을 풀어봅시다.
이 방정식이 양수근을 가짐을 알고 있으므로, 양 변에 1/3 제곱을 할 수 있고, 2^(x/3) = x 를 얻습니다. 이항하면
1 = x 2^(-x/3) = x e^(-x(log_e 2)/3)
이 됩니다. 이제 k = -(log_e 2)/3 로 두고 이 값을 양 변에 곱해주면
k = kx e^(kx)
이 됩니다. 따라서 양 변에 W(x)를 취해주면
W(k) = kx
이 되며, x = W(k)/k 가 원하는 답이 됩니다.
어떻게 보면 매우 작위적인 풀이처럼 보일 수 있지만, W(x)라는 함수 자체가 비교적 좋은 성질을 갖고 있고 또 역사적인 정당성(!)도 갖고 있으며, 그 수치적인 값을 계산하기도 비교적 용이하기 때문에 비교적 좋은 풀이라고 할 수 있습니다. 참고로 W(k)/k 의 구체적인 값은 약
1.3734671196961651667
정도입니다.
다음으로 두 번째 방정식을 풀어봅시다. 풀이는 앞서와 거의 동일합니다.
일단 두 양수근은 직감으로 때려맞추면 x = 2, 4 임을 쉽게(?) 알 수 있습니다. 그러므로 오직 음수근만이 문제가 되지요. x가 식 2^x = x^2 의 유일한 음수근이라고 합시다. 양 변에 제곱근을 취하면
2^(x/2) = -x
가 됩니다. (왜 x가 아니라 -x일까요? 그것은 x가 음수이기 때문입니다.) 그러면
-1 = x 2^(-x/2)
이므로, 앞서와 같이 k = -(log_e 2)/2 로 두면
-k = kx e^(kx)
로부터 x = W(-k)/k 를 얻습니다. 그리고 이 값을 실제로 수치적으로 계산해보면
x = -0.76666469596212309311...
이 나옵니다.
감사합니다.ㅠㅠ sos님~ 뭔얘기인지는 몰라도 감동했네요..^^ 그래도 저한테 관심가져주시는분이계셔서 감사합니다^^ 다들 그냥 무시하고 지나가시면 어쩌나..걱정했습니다.
원래 다항식의 근도 3차방정식까지만 일반해를 구할 수 있어요.(근의 공식이 있다는 소리죠) 그외의 고차방정식은 이미 근의 공식이 존재하지 않는다는 증명까지 나왔거든요. 그래서 보통 조리제법으로 근이 나오지 않으면 4차이상의 방정식의 근은 구할 수 없습니다.
하물며 다항식도 그런데, 지수함수와 같은 초월 방정식은 애초에 대입법 말고는 근을 구할 수 없습니다.
음, 고차방정식의 일반적인 근의 공식이 존재하지 않는 건 사실이지만 (아벨-루피니 정리), 그 경계가 3차까지가 아니라 4차까지입니다. 3차는 카르다노 해법이, 4차는 페라리 해법이 존재하지요.
근데 솔직히 말하면, 3차까지는 그래도 사람으로써 용납할 수 있는 정도의 복잡함이 나오지만 (이중근호 정도), 4차는 차마 눈뜨고 볼 수 없을 정도로 공식이 복잡하지요...
개인적인 의견으로는 그냥 근이 대수적으로 표현된다는 그런 학술적인 의미 의외에는 별로 쓸데가 없는 것 같습니다.
어차피 수치해석적인 방법으로 임의의 차수의 다항식의 근을 임의의 정확도로 구할 수 있고, 반대로 5차방정식의 일반해는 타원함수를 이용하여 표현됨이 증명되어 있으니 말이지요 -ㅁ-
아 그런가요? 4차까지는 가능한가요? 사실 제가 대학수학은 거의 공부한 적이 없어서 몰랐습니다.
그냥 다른 곳에서 들은 풍문으로 말한 거죠.
다들.. 초라한 제 질문에 심도있는 논의를 해주셔서 감사합니다^^ 그냥 저는 아무말없이 추천올려드리고가요^^또 앞으로 질문 많이 올릴거 같은데..^^ 그때 또 답변 많이 달아주시면 감사하겠습니다 ^ㅁ^