평균값정리의 의미, 활용하는 상황에대해 질문입니다..
게시글 주소: https://orbi.kr/0002081703
미분파트에서 수리논술준비하는데.. 따른것들은 이해가 가는데 평균값정리쪽에서 이해가 도저히 안가서 질문을올립니다.
질문 1. f(a+h)=f(a)+hf'(a+세타h) 단 0이식을 수능칠땐 정석에서 한번본기억이있긴한데.. 여기서 h가 매우 작아진다면 평균값의 정리가 유도되는건 알겟는데요...
강의하실때 sin을 예로 드셧거든요? 삼각함수표 이야기하시면서 f=sin이라하고 sin0.01의 예로 드셧는데요
sin0.01=sin0 + 0.01f'(0) 요 의미인것같아요,...(제가이해한것으론) 따라서 sin0.01=0.01이라고 하셧는데.. 요기서요
왜 f'(0)인가요..? 분명히 h=0.01로 잡으셧는데.. 그냥 0과 비슷하다고 본것인가요???
2. 그래프를 그리시고 접선을 그으신후에 접점과 가까울땐 y값이 비슷비슷하다 하지만 접점과 멀다면 그 차이는 비슷비슷하지 않다 따라서 원래함수와 접선과의 y값의 차이가 크다면
이댄 이계도 함수가 지배한다... (흐흐흑 여긴 무슨소린지 모르겠음..) 이게 무슨소리일까요...
3. 평균값의 정리는 즉 델타x(오차) 가 얼마나 차이나나에 따라 쓰는거다 즉 함수값의 근사적 추정에 관한것이다 라고 하셧는데..
그니까 이말뜻은 h가 작을때 즉 함수값과 접선값의 차가 매우 작을때 쓰는거다! 라는 건가요???
흐.. 어렵네요 부탁드려요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 1
이벤트 있는지 몰랐는데 당첨됐어요 내일 휴가도 나가는데 행복하네요
-
수술 직후 아픈거 어떰? 솜 뺄때 지옥이라던데 이건 어떰? 비염때문에 삶의질...
-
사라사가 아니면 만족을 못함 그 필기감이 나오질 않아
-
올해도 의반들께서 미적 정답률 씹창내주실거야..
-
자퇴 3드론은 02~04년생들한테만 꿀이었다. 솔직히 저때 3드론 안한거는 나도...
-
최고임 집에 리필만 3통 쌓아둠 깔별로
-
추천 받아서 써보는데 질감이 깔끔헤서 좋음 펑소에 눌러쓰는 편인데 살짝 빤딱지게 써지네
-
*공도벡없이
-
이런거 바로 나오는 사람들 머지 기출분석하다 보면 외어짐? 이런거 기출분석하면서 신경쓰시나요?
-
여기 중국인 유학생도 꽤 있던데..
-
단품으로 뭐 사기 너무 비싼듯
-
좋아여
-
요즘 물가 특 4
김밥<<이새끼 존나 비쌈 옛날엔 2천얼마면 한줄 사서 라면이랑 같이 67천원에...
-
확통드릴은 0
나를겸손하게만드는구나
-
미분방정식풀려고외우고있음
-
으
-
휘핑크림을 녹여서 음료수랑 섞어먹는 주의라서 바텐더마냥 컵 흔들어재끼다가 한사발...
-
어떤이들은 고민 않고 쉽게 살아가지만 그 보다 좀 더 예민한 난
-
가격 50정도 차이나는데 대치랑 평촌이랑 차이 큰가요?
-
유튜버 비밀이야 서울과학고 - 서울대 토목공학과(현 건설환경공학부) 졸업 전공과는...
-
확통이고 3덮 72떴습니다 작년에 최저만 맞춘다고 수학을 아예 놔버려서 작수...
-
노베 공부 일기 0
작년 8월 군대에서 책을 읽던 도중 갑자기 대학교에 가고 싶어졌다.신병 때 고졸...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아 8문제 푸는데 공부량은 공통 그 이상이라네~
-
탐구 뭐선택하심?
-
영어를 70분동안 해야된다는거자나 안칠래
-
코케숲 0
코 큰 케인인님이 숲에남을껄이라고 후회합니다. 후회 하고있어요~
-
피곤해서 할수가없네 하
-
스블 드랍할까 4
미적 스블 렉쳐7까지 들었는데 진지하게 배운게 없음 수업 내용이 0.3 김현우임;;
-
로망
-
창렬인데 그냥 먹을게... 옆에 바로 편의점인디
-
전적대까지 하면 세 개 태그해야하는데 ㅋㅋㅋ 화려한 경력
-
하 벎서부터 지친다 에효
-
제발.
-
굴려진 애인지 그냥 착실하게 한애인지 놀다가 늦게 정신차려서 온애인지 다 보임 나는...
-
학교에서 발생했으니 그나마 다행
-
수능날 그 심장떨리는 느낌이 안난다
-
저는 평균적으로 10500원정도 한끼에 쓰는거같은데 너무 사치부리는거같음? 뭔가 양심에 찔려서
-
4덮 치는 사람들 13
오늘 언제 잘거에요 똑같이 새르비?
-
오르비에선 그럼 반박안받아요
-
가자 팀 기트남어
-
2q할걸 그랬나 그래도 13번인데
-
작년 교재에 비해서 100페이지가 짧아졌던데 혹시 이유가 있음?
-
2406왤케 어려움 제에발 물문학 불독서 22수능의 재림 제에발
-
벡터 너무 어려워 12
이거 사람이 다룰수있는게 맞는건가
-
청소년 백일장이 찾아보면 종류가 되게 많은데 당선작들보면 진짜 벽 쎄게 느껴져서 바로 포기함
-
뭐? 나말고 이정도 좃찐따가 또있어?
-
힝 나 야자 안하는데..
-
?
-
난 제주의다.
-
넓은 관점에서 보았을 때 크게 가치가 없어보임 국토가 다이나믹하게 넓으면 모를까.....
평균값 정리는 근사식이 아니라 정확한 식입니다. 기하학적으로 보면 미분가능한 함수의 평균기울기는 그 그래프상의 어떤 지점에서 실제로 순간기울기로 나타난다는 뜻으로 일차적으로 이해할 수 있습니다.
그러나 그보다도, 평균값 정리는 주어진 함수를 좁은 영역에서 다항식으로 근사시킬 수 있는 기반을 마련해줍니다. 예를 들어서 x=a 에서 함수 f(x) 는 평균값 정리로부터 (x와 a 사이의 어떤 c에 대하여)
f(x) = f(a) + f'(c)(x-a)
로 적히는데, 이는 x가 a와 가까울 때 실제로 f(a)와 f(x)가 얼마나 차이나는지를 정량적으로 알려준다는 것을 알 수 있습니다. 도함수의 연속성까지 가정한다면 x와 a가 가까울 때 f'(c)를 근사적으로 f'(a)로 생각할 수 있으므로, 우리는 '근사적으로'
f(x) = f(a) + f'(a)(x-a)
를 얻습니다. 사실 잘 생각해보기면 위 식의 우변이 접선의 식의 됨을 알 수 있으며, 이로부터 접선은 주어진 함수를 주어진 점 근처에서 일차식, 즉 직선으로 가장 잘 근사했을 때의 그 식임을 알 수 있습니다.
하지만 두 번째 식은 분명 근사식이며, 그 오차는 x와 a의 차이가 커질수록 일반적으로커지게 될 것입니다. 하지만 함수에 더 좋은 성질을 주면 그만큼 고차다항식으로 근사할 수 있음이 잘 알려져 있습니다. 이것이 바로 그 유명한 테일러 정리이지요. 증명없이서술만 하자면, f가 n+1번 미분가능하고 그 n+1계 도함수가 연속일 때,
f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^(n)(a)(x-a)^n/n! + f^(n+1)(c)(x-a)^(n+1)/(n+1)!
을 만족하는 c가 x와 a 사이에 적어도 하나 존재합니다. 즉 위 식은 주어진 함수를 n차다항식으로 근사하는 방법을 알려줍니다. 한편 함수가 무한히 미분가능하고 저 오차항이 n이 커짐에 따라 0으로 수렴하면, 우리는 소위 테일러 급수라고 하는 무한급수식을 얻습니다.
예를 들자면 2011 설대 수리논술에 적용가능 ㅇㅇ