e^ax sinbx 함수의 부정적분 구하는 방법과 그 확장(선형대수학을 이용한 적분방법)
게시글 주소: https://orbi.kr/000201922
보통 이 적분은 부분적분법을 써서 구하는 방법이 일반적입니다.
그런데 다음과 같이 이 함수를 직접 적분하지 않고 부정적분을 구하는 방법이 있습니다.
e^ax sinbx를 먼저 미분해보죠.
e^ax(asinbx+bcosbx) 가 되겠죠? 이번엔 e^ax cosbx를 미분해봅시다.
e^ax(acosbx-bsinbx) 네요?
아하! 둘다 sinbx, cosbx를 가지고 있네요! 그렇다면 이것들을 적당한 수를 곱해서 더해주면 e^ax sinbx를 얻을 수 있을겁니다.
그러니까,
e^ax(Asinbx+Bcosbx)를 미분한 식이 e^ax sinbx가 되는 A, B를 찾을 수 있다는 겁니다.
음 위 식의 도함수는 e^ax { (aA -bB)sinbx + (aB+bA)cosbx } 이니까 이것이 e^ax sinbx와 같기 위해서는,
aA-bB=1, aB+bA=0이어야 합니다. 이건 일차방정식이죠.
(a -b)(A)=(1)
(b a)(B) (0)
(괄호가 위아래로 이어져있습니다.)
그럼 위 행렬의 역행렬을 구해서 양변에 곱해주면 A, B를 구할 수 있어요
그 값은 A=a/(a^2+b^2), B=-b/(a^2+b^2) 겠죠? 한편 e^axcosbx는 위 일차방정식의 우변 벡터가 0, 1인 경우니까 이 경우에는 A=b/(a^2+b^2), B=a/(a^2+b^2)가 됩니다.
따라서 e^ax sinbx의 부정적분은 e^ax/(a^2+b^2) * (asinbx-bcosbx)입니다. 그리고 e^ax cosbx의 부정적분은 e^ax/(a^2+b^2) * (bsinbx+acosbx)입니다.
적분을 미분을 통해서 구한셈이죠.
e^ax sinbx coscx 라는 복잡한 함수의 적분을 구할 때에도 위와 같은 방법을 이용할 수 있습니다.
이때는 물론 4*4행렬의 역행렬을 구해야 겠죠.
원리가 궁금하신분들은 아래 내용을 참조하세요.
이 글의 요지는 sin, cos, exponential의 x의 계수가 서로 다른 일차곱으로 이루어진 함수는 선형대수학을 이용하면 얼마든지 부정적분을 구할 수 있다는 이야깁니다.
미분은 선형사상입니다. 한편 선형사상f의 image에 있는 원소 b의 역상은 f(a)=b인 a에 대해 a+Ker(f) 입니다. 우리가 부정적분을 하는 과정은 바로 a를 구하는 과정이었죠. (미분 operator의 kernel은 상수함수이므로 a+Ker(f)는 부정적분 + 적분상수가 되는 것입니다)
위 적분법의 아이디어는 T-invariant subspace(사상 T에 대해 불변인 부분공간)의 개념을 응용한 것입니다.
exponential, cos, sin과 같은 함수의 곱들을 기저로 갖는 벡터공간을 생각하자는 겁니다. 얘네들은 미분을 해도 결국엔 같은 집합에 속하기 마련이죠. 이 부분공간안에서 미분사상은 다름아닌 bijection이 됩니다. (1이 기저로 있지 않으므로 상수함수가 이 공간안에 존재할 수 없고, 따라서 미분함수는 injection. surjective는, dimension이 같으므로...) 종합하자면 미분사상이 기저를 어디로 보내는지를 통해서 "가역"행렬을 직접 구할 수 있으므로 원하는 함수의 부정적분을 역행렬을 곱해서 구할 수 있다는 이야기입니다.
여기서 질문(ㅋㅋㅋ...)
역행렬을 어떻게하면 쉽게 구할 수 있을까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
추천해주실 분 계신가요
-
되나여?
-
수학 n제 추천 0
이번 6평 공통 15, 21, 22 틀렸고 기하 30(벡터 공부 거의 X) 틀렸는데...
-
시위가있었구나
-
주인 잃은 레어 5개의 경매가 곧 시작됩니다. 시카고대학교"지식이 샘솟아 인간의...
-
버스에서 옳비하고있는데 뒷사람이 ㅈㄴ 쳐다보가있었음,,,,ㅎㄷㄷ 4
걍 생각없이 설마 이버스에 오르비언이있겠어?? 싶어서 걍 대놓고하고있었는데 내릴때...
-
탈릅 4
사실 휴릅 이전에도 요즘 많이 들어오지도 않았던 게 함정 요즘들어 떠나시는 분들이...
-
아무내용없는데 왜 실검임?
-
그래도 완강해야되나요? 제가 이제 반수시작해서 공부를 좀 효율적으로 해야할것...
-
의외의 사실 3
아바타 2는 천만영화다
-
진짜 돈 엄청나게 버는구나 부럽고 배아프군아...
-
안가람쌤 공통 미적 둘다 들으려고 하는데 같은 강사로 두개 다 들어도 컨텐츠 안겹치나요?
-
6모 4나왔는데 김승리 커리 전부 다했는데도 앱스키마가 너무 어려워서 심찬우로...
-
지금 메타 요약 0
-
6모이후 커리? 0
1일 1실모나 이런건 언제부터 들어가는지 같은 대략적인 수험생 분들의 국수탐...
-
메이플 하고싶다 0
그치만 참아야한다.
-
그짝 집단이 논리 딸릴때 쓰는말임 ㅇㅇ
-
전 초등학교때부터 군인인 아버지 밑에서 크면서 대한민국을 수호하고 두발뻗고 편하게...
-
08년생이라 재수약간 부담감 느끼긴 하는데 내신성적으로는 원하는 대학에 가기가...
-
쌀캐러 가야지 5
하 이번주 월 수 목 금 토 출근 실화냐...
-
엔제도 조금 같이 하는중..
-
다 떠나가는구나 5
룸메도 과친구도 다 기숙사떠남 우우,,
-
인싸들...
-
4규 시즌2 2
4의규칙 시즌2면 시험에서 몇번대 정도 난이도일려나요?
-
아 맞다 나 2
수능 포기함
-
애매한데 출제된 적 없긴함
-
진짜 꼭 가고싶은데...
-
영어 감점 폭을 고려해서 계산한 수치라고 합니다.
-
지문 2문단 - 조건화 원리는 믿음에 관한것. 행동에 관한 것이 아님 3문단 -...
-
과고까지 떨어지니 자살마렵더라 절대내가떨어져서아님
-
님들 만약에 사귀는사람이 계속 만날때마다 한가지 음식만 먹으면 14
참는다 vs 한마디한다 매일매일매일 마라탕만 먹자고 하면 어캄?
-
국어 소수방 만들어서 이상바한강k서바김승모스키마 전회차 소퀄로 즐기기 ㄱㄱ
-
어캐하시나요? 저는 행렬 안배운 세대라서 나중가서는 확통 기하까지 해야할텐데 공부를 새로 해야하나
-
국어 지문 ㅈㄴ 풀어도 시간은 도저히 안 줄고 문학은 여전히 애매한 선지에 낚이고...
-
시발 글 안 써 이제
-
조졌다 비행기도 못타는거 아니냐 옛날에는 ㄱㅊ았는데
-
아니 그럼 힘들게 빚 드디어드디어 이제야 탕감한 사람들은 뭐가됨???...
-
무스탕 코디인데 좀 시크한 느낌 주고싶어서 구두랑 매칭함 이렇게 가-겨울 시기에...
-
이감 시즌5 언제부터 시작인가요??
-
??:(아무튼 나는 개꿀빨고 있지만) 세상이 평화로웠으면 좋겠어!!!! ㅠㅠㅠㅠㅠㅠ...
-
수학 도형 쪽이 엄청 어려웠던 적이 있는데 난 풀 때 난이도 체감을 잘 못하는...
-
스튜어트 정리는 5
중선정리랑 엮어서 외워야 안까먹는듯
-
?
-
경찰, '제주항공 여객기 참사' 책임자 15명 입건…수사 본격화 0
국토부·한국공항공사·방위각 업체 관계자 등 15명 입건 업무상과실치사상 혐의…경찰...
-
진심입니다
-
문제 좋음 1
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 5천원 커피값에 미리 하나...
-
나만 그런가 있다가 사라졌던 도희님 글도 다시 올라와있고
-
설맞이 vs 샤인미 다 풀기에는 시간이 안날거 같아서 ㅎㅎ,,
슈뢰딩거님답게
수리 게시판에는 금지된 수학문제 질문이 아닌 글을 쓰시면서
또 수학적으로 좋은 글을 써주셨군요!
제가 방금전에 이 문제가지고 다시 생각해봤는데
cos,sin 함수들이 n번 곱해진 함수공간에서의 미분행렬을 점화식으로 찾은것 같아요!
먼저 위의 삼각함수들이 n번 곱해진 함수공간(이걸 n-TFP space(n-삼각함수곱공간)라고 부를게요 편의상...)의 기저는 2^n개입니다. 이 기저의 순서를 잘 매겨서 {v_i,n}이라 합시다. 그리고 x의 계수들을 r_i로 매길게요.
그러면 이제 n+1-TFP space의 기저를 잡는 방법이 문제가 되는데,
v_i,n+1=v_i,n*sin(r_n+1x) (i<=2^n 일때)
v_i,n+1=v_i-2^n,n*cos(r_n+1x) (i>2^n 일때)로 정의하면,
T_n(n-TFP space에서의 미분사상)에 대해서
T_n+1(v_i,n+1)=(T_nv_i,n)sin(r_n+1x)+r_n+1v_i+2^n,n+1 (i<=2^n 일때)
=(T_nv_i-2^n,n)sin(r_n+1x)+r_n+1v_i-2^n,n+1 (i>2^n)가 됩니다.
따라서 n에 관한 미분행렬 T의 점화식을 다음과 같이 얻습니다.
T_n+1= T_n -r_n+1*I_n(n by n 항등행렬)
r_n+1*I_n T_n
역행렬 점화식 까지 찾아냈다면 더 기분좋을 것 같은데 생각대로 안되네요 그건...
차라리 삼각함수 덧셈정리를 n번 써서 전개 하는게 나으려나 -_-...
T_2 구해서 sinaxsinbx 시험삼아 적분해봤더니 -a/(a^2-b^2)cosaxsinbx +b/(a^2-b^2)sinaxcosbx 가 나오네요