산수칼럼)내가 구해야 하는 답이 무엇잉교?-문제 속에 답이 있다---6평-1
게시글 주소: https://orbi.kr/00019386247
안녕하세여 오르비여러분~
수능이 끝나고 벌써 일주일이 넘었네요.....
좀 많이 뒷북인 감이 없자나 있지만 보닌이 심심한 관계로 수학에 관해 글을 좀 끄적여보려합니다.
일단 필자 소개를 좀 하자면 작년 수능이 지진으로 미뤄지고 나서 심심해 눈팅하다 세계사 자작문제로 데뷔한 중2병 오덕아싸입니다 ㅎㅎ
여러분들은 들어오시기 이전에 제목을 보시고 스스로 "뭐 저런 진부한 소리를 지껄이는 Q.T가 다있누"하고 들어오셨을지도 모르겠으나 확실한건, 최상위의 그들은 바로 이러한 코드 내에서 문제를 풀어나간다는 것입니다.
자기 자랑을 하려는건 아닙니다. 다만 이 글을 읽으신 후 자신이 그동안 어떤 방식으로 문제를 대했는지에 대한 간단한 반성 및 고찰의 시간이 이루어졌으면 하는 바람입니다~
참고로 자세한 풀이는 하지 않을것입니다. 어디까지나 이 글의 목적은 수학 문제를 대할 때의 태도와 그 논리흐름에 관련된 것이니까요. 그래봤자 저는 문돌이입니다 흐규
-------------------------------------------------------------------------------------------------------------------------------
1)29번
일단 문제를 좀 봅시다.
대충 문제를 훑으셨으리라 생각합니다.
이 문제는 우리 문돌이들을 6평때 충격에 빠뜨렸던 문제로 유명하죠... 지금부터 그 이유를 알아보도록 하겠습니다.
우선 우리가 구해야 하는 정답을 알기 위해선 a,b,c의 정확한 값을 알아야 한다는 것을 알 수 있습니다.
즉 함수 식을 구해야 한다는 뜻이죠.
그럼 이제 우리가 알 수 있는 것들(조건)을 좀 봅시다.
1)함수 F(x)는 x=1을 기준으로 2개의 함수꼴로 나타나는군요
2)음.. 연속이네요
3)오.. 역함수도 가집니다.
4)주어진 함수와 역함수가 3점에서만 만납니다.
5)게다가 그 점의 x좌표까지 알려줬네요...(-1, 1, 2)
그럼 찾은 조건을 가지고 우린 생각을 해야합니다.
우리의 최종목표는 함수f의 정체를 밝히는것이죠.
그렇다면 과연, 내가 찾은 조건은 주어진 함수를 완성시키기에 충분한가?
1.조건 1)과 2)를 가지고 식 하나를 뽑아낼 수 있습니다. 우리는 연속이 뭔지 알기 때문입니다.
2.조건 3)만 보고서 우리는 두 그래프의 개형이 떠올라야합니다. 죽을때까지 1번:증가만 하거나//2번:감소만 하거나
3.조건 4)를 보고 확신할 수 있어야합니다. 아하! 이 그래프는 감소만 하는구나!
cf1)증가 그래프라면 무조건 함수와 그 역함수의 교점은 y=x선상에서만 만납니다. 따라서 1.과 2.에서 추론한 것과 같이 그래프를 그려나가면 다음과 같은 케이스에 봉착합니다.
3-1.에... 한점에서밖에 안만나는데?
3-2.에... ㅈㄴ 많은데?
3-3.에... 두점에서밖에 안만나는데?
대다수의 수험생은 여기서 멘붕이 옵니다. ㅅㅂ 문제 잘못냈네 ㅋㅋ 이거 이의제기해야징~!
cf2)그렇다면 감소함수 그래프는 언제 만나는데??
첫번째: y=x선상에서 만난다.(자명합니다 ㅎ)
두번째: y=x대칭인 점에서(...!)만난다.
애초에 역함수 자체가 y=x대칭인 함수이죠.... 이것만 알고 있었어도 y=x선상 위에서 만나는 점뿐만 아니라 바로 두번째 조건도 생각을 했을것입니다... 많은 분들이 이 점을 놓쳤죠
다시 돌아가서...
4. 그럼 이제 그래프 차원을 넘어서 식 차원의 추론까지도 가능합니다.
f의 그래프는 y=x와의 교점이 하나여야만 합니다. 또 y=x 그래프의 대칭인 점이 한 쌍, 즉 두 점이여야 하죠. 이런 식으로 도합 세점에서 f와 f의 역함수가 만난다는 걸 알 수 있죠.
사실 그 뒤의 과정은 생략하도록 하겠습니다. 계산을 보여드릴려고 이 글을 쓴것이 아니기때문이죠.
제가 6평 29번 문제를 들고와서 여러분에게 보여드린 목적은 다음과 같습니다.
첫번째. 내가 무얼 구해야하나
문제풀이에 있어서 목적의식을 가져야 한다는 것입니다.
두번째. 내가 알고 있는게 무엇인가.
아는 걸(조건) 가지고 문제를 풀어야합니다. 모르는 거 백날 찾아봤자 그 문제 푸는데 쓸데없습니다.
세번째. 아는 걸 가지고 어떤 과정으로 수립된 목표를 달성할 것인가
세번째의 핵심은 누가 뭐래도 대충 끄적거리지 말자(=쓸데없는 삽질하지 말자)입니다. 무의미한 삽질을 줄이는 것이야말로 수학문제 푸는데 있어서의 미적 아름다움이니까요 ㅎ
-------------------------------------------------------------------------------------------------------------------------------
사실 첫 수학 칼럼이라 제가 전달해드리고 싶은 점이 잘 전달되었는지 모르겠네요...
제가 전달해드리고 싶은 골자는 저어기 위에 마지막 3개가 대부분 공통 코드로서 수능 문제풀이가 작용된다는 것을 보여드리고 싶은데... 일단 69평은 킬러 3문제(21 29 30)만 하고 넘어갈 예정이긴 합니다만 아무래도 이번 수능 나형은 비킬러도 난이도가 올라왔다는 평이 여론이어서 18번부터 좀 건드려볼까,,,싶기도 한데... 이런속도로는 무리이지 않을까...랄까?
여튼 저도 심심해서 쓴것이니만큼 모쪼록 재미로 읽어주시면 좋겠네요 ㅎㅎ
6평 21번하고 30번은 오늘 올라가긴 힘들거 같고 내일즈음에 올라갈것같습니다 ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 그냥 숫자 자체가 되게 마음에드는 그런거
-
지금 내부 회의중이시라함 ㅋㅋㅋ
-
보통 국어 1 수학 4~5 영어 2~3 25수능은 화작98 미적50 영어79...
-
이상한꿈 ㅈㄴ꾸더라
-
흐에ㅣㅣㅔ
-
신택스랑 파데중 고민중이에요. 제발 알려주세요 선생님들
-
이거 어카냐
-
지금 장재원 공통 미적 듣고았고 강기원 미적 대기 스2쯤 풀려서 어떻게 할까...
-
판단부탁 2
디엠 분석가 구함 소개팅할사람한테 중매인이 내사진 보냈는데 반응 분석좀
-
성관계하다가 여자인줄 알았는데 보추여서 ㅈㄴ싸우다가 깨버렸는데 이거 좋은꿈이야
-
현역은 깡이 있어야지 자신있게 가자
-
개쩌는 공부계획 1
a4로 나만의 수학교재를 만들기 아 잇올에서 스테이플러 하루종일 찍어댈거임
-
고3 수학 노베 3
다시 고1 수학부터 하는데 열심히 하면 노베 극복할 수 있겠죠? 하루에 5~6시간 합니다
-
수학 못해서 못 알려주겠다
-
잘때마저도 좆같게
-
소신발언 2
경제 경영이 문과에서 제일 높은데 상경이라 해야되는거아님??
-
반수 상담 1
현역 수능 언미물지 97 87 2 68 96 아주대 수시 교과 붙어서 옴 반수해서...
-
난 스티카라고 발음함
-
며칠 전까진 텐타시온 노래에 꽂혀서 주머니에 총 넣고 다녔는데 야구 시즌 다가오니까...
-
국민대 정시 추가합격생인데 기숙사 들어가기 많이 힘든가요??
-
9모 다시보는줄 알았음
-
근데 작수는 약간 20 21 은 기출에서 못보던 소재인것같음
-
진짜 궁금 만약 저 둘 다 되는 성적이라면?
-
기가 쭉쭉 빨리네..
-
2등급정도되면 n제 ㅈㄴ푸는게 맞지않나?
-
기생집 3점 문제집 다 풀었고 단원당 평균 4개 틀렸는데 어삼쉬사랑 4점 기출문제로...
-
레알피곤... 5
번역일은 거의 없었는데 행정일이 또 많아져서 바빴다는... 눈 감으면 바로 잘거 같다...
-
남들이 고민하는 시간에 이분이 둘다 가져가시고 정치까지 하심 ㅇㅇ
-
주식을 추천해주고 죽이고 싶은 사람에겐 선물을 추천해주고 사랑하는 사람에겐 N수를 추천해줘라
-
근데 이미 사서 풀고있긴함
-
나만 에피없어 18
사실 대학도 못갔어
-
개념할때 좋은것 0
생각의질서
-
인생 ㅈ같네 4
ㅗㅗㅗㅗㅗㅗ 다 똑같이 등록금내면서 왜 원하는 수업은 못듣는거임?ㅋㅋㅋ
-
생윤 기출? 0
현재 림잇만 듣고 있고, 필기 복습과 교재 내 문제만 풀고있습니다 풀커리를 탈...
-
이런건좀 없애라
-
걍 수특 수완 푸는게 낫지 않냐
-
특정 단어만 보고 불나방처럼 꽂히는 거 고쳤더니만 이젠 무의식 영역에서 고쳐야...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
52344->31232
-
연고서성한은 좀 떨어진거 같다고 하는데 경희도 떨어졌나요? 건동홍은 오히려 추합이...
-
점심 ㅇㅈ 스윽 13
-
무기력하다...
-
국민대 합격생을 위한 노크선배 꿀팁 [국민대25][성적/재수강/출석] 0
대학커뮤니티 노크에서 선발한 국민대 선배가 오르비에 있는 예비 국민대학생, 국민대...
-
다들 기대해라
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
센츄 언제나오지 6
지난달처럼 22일인가
-
난 쉽던데 아직까진
좋은글추
흠~ 하지만 아무도 관심이 없는걸...
홍보합시닷
흠.....
ㄷㄷ 혹시 어떻게 공부하셨나요??
아 안녕하세여~ 전 기출분석이 수학공부에 있어서 가장 중요한 공부라고 생각합니다! 그래서 실제로 그렇게 해왔고.... 흠 혹시 더 자세한 설명 원하시면 쪽지로 해드릴수 있을까요?? 여기선 추상적인 말밖에 못해드릴거같아요