산수칼럼)내가 구해야 하는 답이 무엇잉교?-문제 속에 답이 있다---6평-1
게시글 주소: https://orbi.kr/00019386247
안녕하세여 오르비여러분~
수능이 끝나고 벌써 일주일이 넘었네요.....
좀 많이 뒷북인 감이 없자나 있지만 보닌이 심심한 관계로 수학에 관해 글을 좀 끄적여보려합니다.
일단 필자 소개를 좀 하자면 작년 수능이 지진으로 미뤄지고 나서 심심해 눈팅하다 세계사 자작문제로 데뷔한 중2병 오덕아싸입니다 ㅎㅎ
여러분들은 들어오시기 이전에 제목을 보시고 스스로 "뭐 저런 진부한 소리를 지껄이는 Q.T가 다있누"하고 들어오셨을지도 모르겠으나 확실한건, 최상위의 그들은 바로 이러한 코드 내에서 문제를 풀어나간다는 것입니다.
자기 자랑을 하려는건 아닙니다. 다만 이 글을 읽으신 후 자신이 그동안 어떤 방식으로 문제를 대했는지에 대한 간단한 반성 및 고찰의 시간이 이루어졌으면 하는 바람입니다~
참고로 자세한 풀이는 하지 않을것입니다. 어디까지나 이 글의 목적은 수학 문제를 대할 때의 태도와 그 논리흐름에 관련된 것이니까요. 그래봤자 저는 문돌이입니다 흐규
-------------------------------------------------------------------------------------------------------------------------------
1)29번
일단 문제를 좀 봅시다.
대충 문제를 훑으셨으리라 생각합니다.
이 문제는 우리 문돌이들을 6평때 충격에 빠뜨렸던 문제로 유명하죠... 지금부터 그 이유를 알아보도록 하겠습니다.
우선 우리가 구해야 하는 정답을 알기 위해선 a,b,c의 정확한 값을 알아야 한다는 것을 알 수 있습니다.
즉 함수 식을 구해야 한다는 뜻이죠.
그럼 이제 우리가 알 수 있는 것들(조건)을 좀 봅시다.
1)함수 F(x)는 x=1을 기준으로 2개의 함수꼴로 나타나는군요
2)음.. 연속이네요
3)오.. 역함수도 가집니다.
4)주어진 함수와 역함수가 3점에서만 만납니다.
5)게다가 그 점의 x좌표까지 알려줬네요...(-1, 1, 2)
그럼 찾은 조건을 가지고 우린 생각을 해야합니다.
우리의 최종목표는 함수f의 정체를 밝히는것이죠.
그렇다면 과연, 내가 찾은 조건은 주어진 함수를 완성시키기에 충분한가?
1.조건 1)과 2)를 가지고 식 하나를 뽑아낼 수 있습니다. 우리는 연속이 뭔지 알기 때문입니다.
2.조건 3)만 보고서 우리는 두 그래프의 개형이 떠올라야합니다. 죽을때까지 1번:증가만 하거나//2번:감소만 하거나
3.조건 4)를 보고 확신할 수 있어야합니다. 아하! 이 그래프는 감소만 하는구나!
cf1)증가 그래프라면 무조건 함수와 그 역함수의 교점은 y=x선상에서만 만납니다. 따라서 1.과 2.에서 추론한 것과 같이 그래프를 그려나가면 다음과 같은 케이스에 봉착합니다.
3-1.에... 한점에서밖에 안만나는데?
3-2.에... ㅈㄴ 많은데?
3-3.에... 두점에서밖에 안만나는데?
대다수의 수험생은 여기서 멘붕이 옵니다. ㅅㅂ 문제 잘못냈네 ㅋㅋ 이거 이의제기해야징~!
cf2)그렇다면 감소함수 그래프는 언제 만나는데??
첫번째: y=x선상에서 만난다.(자명합니다 ㅎ)
두번째: y=x대칭인 점에서(...!)만난다.
애초에 역함수 자체가 y=x대칭인 함수이죠.... 이것만 알고 있었어도 y=x선상 위에서 만나는 점뿐만 아니라 바로 두번째 조건도 생각을 했을것입니다... 많은 분들이 이 점을 놓쳤죠
다시 돌아가서...
4. 그럼 이제 그래프 차원을 넘어서 식 차원의 추론까지도 가능합니다.
f의 그래프는 y=x와의 교점이 하나여야만 합니다. 또 y=x 그래프의 대칭인 점이 한 쌍, 즉 두 점이여야 하죠. 이런 식으로 도합 세점에서 f와 f의 역함수가 만난다는 걸 알 수 있죠.
사실 그 뒤의 과정은 생략하도록 하겠습니다. 계산을 보여드릴려고 이 글을 쓴것이 아니기때문이죠.
제가 6평 29번 문제를 들고와서 여러분에게 보여드린 목적은 다음과 같습니다.
첫번째. 내가 무얼 구해야하나
문제풀이에 있어서 목적의식을 가져야 한다는 것입니다.
두번째. 내가 알고 있는게 무엇인가.
아는 걸(조건) 가지고 문제를 풀어야합니다. 모르는 거 백날 찾아봤자 그 문제 푸는데 쓸데없습니다.
세번째. 아는 걸 가지고 어떤 과정으로 수립된 목표를 달성할 것인가
세번째의 핵심은 누가 뭐래도 대충 끄적거리지 말자(=쓸데없는 삽질하지 말자)입니다. 무의미한 삽질을 줄이는 것이야말로 수학문제 푸는데 있어서의 미적 아름다움이니까요 ㅎ
-------------------------------------------------------------------------------------------------------------------------------
사실 첫 수학 칼럼이라 제가 전달해드리고 싶은 점이 잘 전달되었는지 모르겠네요...
제가 전달해드리고 싶은 골자는 저어기 위에 마지막 3개가 대부분 공통 코드로서 수능 문제풀이가 작용된다는 것을 보여드리고 싶은데... 일단 69평은 킬러 3문제(21 29 30)만 하고 넘어갈 예정이긴 합니다만 아무래도 이번 수능 나형은 비킬러도 난이도가 올라왔다는 평이 여론이어서 18번부터 좀 건드려볼까,,,싶기도 한데... 이런속도로는 무리이지 않을까...랄까?
여튼 저도 심심해서 쓴것이니만큼 모쪼록 재미로 읽어주시면 좋겠네요 ㅎㅎ
6평 21번하고 30번은 오늘 올라가긴 힘들거 같고 내일즈음에 올라갈것같습니다 ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2년 후에 서울대 경영학과 가능성이 어떻게 될까요? 1
안녕하세요. 제가 유학가다가 부득이한 사정으로 한국에 돌아오게 되어서 입시를...
-
로블록스할사람 2
로블록스할사람?로블록스 로블록스할사람
-
어케해야돼노 ㅜㅜㅜㅜㅜ
-
어디로 가야하는가. 츄가모집
-
대학 친구들이 기분 나쁠수있자너
-
내신이 모의고사식으로 나온다 들어서 뉴분감하려 하는데 작년거 들어도 되나요? 교재가...
-
화1 vs 지1 2
화1 50인데 지구과학 할까??? 지구과학 1년 해서 1등급 맞을 수 있나요...
-
한의학에서는 鬱 대신 㭗 애용한다던데 팩트입니까
-
시1발 우리 성공해서 보기로 했잔아...
-
2026 입시 기준 의치한 탐구 질문입니다 나는 의치를 가겠다—> 과2 나는...
-
경고다.
-
추가모집 2
라인 한 번만 잡아주세요 올해 어떻게든 대학 붙여놓고 편입할 생각입니다
-
안녕하세요, 나랏말쌈입니다. 오르비에 글을 쓰는 것은 너무 오랜만입니다. 많은...
-
공부잘하는데 잘생긴놈 보이면 죽인다 ㅅㄱ 나처럼 하나만가져라
-
또 정치메타임? 0
-
들키면 안되지?
-
ㄱㄱ
-
위쪽은 빵이고 밑에쪽은 폭서서 1칸스나성공 or 3떨 양극화가 발생한건가요
-
조기대선가면 져 ㅂㅅ들아
-
님들이라면 뭐할거임?
-
맨날 곧도착이라고 해놓고 5-6분 뒤에 옴 거짓말쟁이임
-
국민의힘 정당 지지도가 37%, 더불어민주당 정당 지지도가 34%라는 여론조사...
-
...
-
가오도 떨어지나? 예를들어 예전 교대보다 지금 교대 가오 개많이 떨어졌고 만약...
-
근데 이게 두려울때가 있고 안 두려울때가 있음 기분 상태에 따라 오락가락임
-
그만!!
-
적백의 영향력 5
의대라인부터는 적백이 필수적인가요?
-
너무 졸려 3
잘가..
-
ㅇㄱㅈㅉㅇㅇ? 7
-
김승리 강민철 3
강기분 다 들었는데 좀 안맞는 거 같아서 김승리로 바꾸려는데 올오카부터 안하고 바로...
-
닉변할까 8
갑자기 맘에 안드네
-
여장시동거는애들왤케많노 원래 남자애들은 이러고노나요?
-
6.5:3.5 근데 전 남초가 좋아서 좋네요
-
ㄹㅇ 재밌을듯 섬에서 사는거임요? ㅋㅋㅋ 흑돼지 다운 흑돼지 다운! 한라봉 나와! 초콜릿 나와!
-
투과목 얘기하면서 카이 카이 거리는데
-
수영탐 1만들기 2
그대신 국어 7받기
-
여장하고가서 ㅋㅋㅋ
-
오르비언 있을까 흐흐
-
나도 여장 12
해보고싶다
-
아 과외하기 싫다 14
역대급 귀찮음
-
여장 ㅇㅈ 3
해도됨?
-
ㅅㅂ 나도 재종가고 싳다고
-
작년에 리밋 수강해서 큰 줄기 개념들은 알고 있는데 올해 실개완으로 혼자 해도...
-
진짜 ㄱㅇ로 오해할것같다
-
흠냐뇨잇 ㅅㅂ 생2 런해?
-
뭐라하지도 못하겠음 티원때 본인발로 나가셨다며... 그럼 우리 감독 누가하냐 스벌..
-
자퇴할려면 5
본교방문해야하네
-
n수를 좀 많이 했고 수능 원점수는 다 100점 나옵니다. 학원에서 아이들을 정말...
-
첫 풀이 3000덕 드리겠습니다! (+자작 아닙니당)
좋은글추
흠~ 하지만 아무도 관심이 없는걸...
홍보합시닷
흠.....
ㄷㄷ 혹시 어떻게 공부하셨나요??
아 안녕하세여~ 전 기출분석이 수학공부에 있어서 가장 중요한 공부라고 생각합니다! 그래서 실제로 그렇게 해왔고.... 흠 혹시 더 자세한 설명 원하시면 쪽지로 해드릴수 있을까요?? 여기선 추상적인 말밖에 못해드릴거같아요